
Index

1. Devops Tutorial
2. Devops architecture
3. Devops life cycle
4. Workflow and principles
5. Devops tools
6. Devops automation
7. Devops engineers
8. pipeline and technologies
9. azure devops
10. aws devops
11. training certification
12. Devops vs agile
13. Bash for Devops
14. Terraform destroy command
15. Terraform for loop
16. Terraform format
17. Terraform output command
18. Terraform output
19. Terraform tfstate
20. Git tutorial
21. What is github
22. Git vs github
23. Git vs svn
24. Git vs mercurial
25. Version control systems
26. Install git on windows
27. Install git on linux
28. Install git on mac
29. Git environment setup
30. Git tools
31. Git terminology
32. Git commands

33. Git flow
34. Git cheat sheet
35. Git init
36. Git add
37. Git commit
38. Git clone
39. Git stash
40. Git ignore
41. Git fork
42. Git repository
43. Git index
44. Git head
45. Git origin master
46. Git remote
47. Git tags
48. Upstream and downstream
49. Git checkout
50. Git revert
51. Git reset
52. Git rm
53. Git cherry-pick
54. Git log
55. Git diff
56. Git status
57. Git branch
58. Merge and merge conflict
59. Git rebase
60. Git squash
61. Git fetch
62. Git pull
63. Git push

DevOps Tutorial

The DevOps is the combination of two words, one is Development and other

is Operations. It is a culture to promote the development and operation process

collectively.

1.1M
90
Polymorphism in Java | Dynamic Method Dispatch

The DevOps tutorial will help you to learn DevOps basics and provide depth knowledge

of various DevOps tools such as Git, Ansible, Docker, Puppet, Jenkins, Chef, Nagios,

and Kubernetes.

What is DevOps?

The DevOps is a combination of two words, one is software Development, and second is

Operations. This allows a single team to handle the entire application lifecycle, from

development to testing, deployment, and operations. DevOps helps you to reduce the

disconnection between software developers, quality assurance (QA) engineers, and

system administrators.

DevOps promotes collaboration between Development and Operations team to deploy

code to production faster in an automated & repeatable way.

DevOps helps to increase organization speed to deliver applications and services. It also

allows organizations to serve their customers better and compete more strongly in the

market.

DevOps can also be defined as a sequence of development and IT operations with better

communication and collaboration.

DevOps has become one of the most valuable business disciplines for enterprises or

organizations. With the help of DevOps, quality, and speed of the application delivery

has improved to a great extent.

DevOps is nothing but a practice or methodology of making "Developers" and

"Operations" folks work together. DevOps represents a change in the IT culture with a

complete focus on rapid IT service delivery through the adoption of agile practices in the

context of a system-oriented approach.

DevOps is all about the integration of the operations and development process.

Organizations that have adopted DevOps noticed a 22% improvement in software quality

and a 17% improvement in application deployment frequency and achieve a 22% hike in

customer satisfaction. 19% of revenue hikes as a result of the successful DevOps

implementation.

Why DevOps?

Before going further, we need to understand why we need the DevOps over the other

methods.

o The operation and development team worked in complete isolation.

o After the design-build, the testing and deployment are performed respectively.

That's why they consumed more time than actual build cycles.

o Without the use of DevOps, the team members are spending a large amount of

time on designing, testing, and deploying instead of building the project.

o Manual code deployment leads to human errors in production.

o Coding and operation teams have their separate timelines and are not in synch,

causing further delays.

DevOps History

o In 2009, the first conference named DevOpsdays was held in Ghent Belgium.

Belgian consultant and Patrick Debois founded the conference.

o In 2012, the state of DevOps report was launched and conceived by Alanna Brown

at Puppet.

o In 2014, the annual State of DevOps report was published by Nicole Forsgren, Jez

Humble, Gene Kim, and others. They found DevOps adoption was accelerating in

2014 also.

o In 2015, Nicole Forsgren, Gene Kim, and Jez Humble founded DORA (DevOps

Research and Assignment).

o In 2017, Nicole Forsgren, Gene Kim, and Jez Humble published "Accelerate:

Building and Scaling High Performing Technology Organizations".

DevOps Architecture Features

Here are some key features of DevOps architecture, such as:

1) Automation

Automation can reduce time consumption, especially during the testing and deployment

phase. The productivity increases, and releases are made quicker by automation. This will

lead in catching bugs quickly so that it can be fixed easily. For contiguous delivery, each

code is defined through automated tests, cloud-based services, and builds. This promotes

production using automated deploys.

2) Collaboration

The Development and Operations team collaborates as a DevOps team, which improves

the cultural model as the teams become more productive with their productivity, which

strengthens accountability and ownership. The teams share their responsibilities and work

closely in sync, which in turn makes the deployment to production faster.

3) Integration

Applications need to be integrated with other components in the environment. The

integration phase is where the existing code is combined with new functionality and then

tested. Continuous integration and testing enable continuous development. The

frequency in the releases and micro-services leads to significant operational challenges.

To overcome such problems, continuous integration and delivery are implemented to

deliver in a quicker, safer, and reliable manner.

4) Configuration management

It ensures the application to interact with only those resources that are concerned with

the environment in which it runs. The configuration files are not created where the

external configuration to the application is separated from the source code. The

configuration file can be written during deployment, or they can be loaded at the run

time, depending on the environment in which it is running.

DevOps Advantages and Disadvantages

Here are some advantages and disadvantages that DevOps can have for business, such

as:

Advantages

o DevOps is an excellent approach for quick development and deployment of

applications.

o It responds faster to the market changes to improve business growth.

o DevOps escalate business profit by decreasing software delivery time and

transportation costs.

o DevOps clears the descriptive process, which gives clarity on product development

and delivery.

o It improves customer experience and satisfaction.

o DevOps simplifies collaboration and places all tools in the cloud for customers to

access.

o DevOps means collective responsibility, which leads to better team engagement

and productivity.

Disadvantages

o DevOps professional or expert's developers are less available.

o Developing with DevOps is so expensive.

o Adopting new DevOps technology into the industries is hard to manage in short

time.

o Lack of DevOps knowledge can be a problem in the continuous integration of

automation projects.

o DevOps Architecture

o
o Development and operations both play essential roles in order to deliver

applications. The deployment comprises analyzing the requirements, designing,

developing, and testing of the software components or frameworks.
o 1.1M
o 90
o Polymorphism in Java | Dynamic Method Dispatch

o The operation consists of the administrative processes, services, and support for

the software. When both the development and operations are combined with

collaborating, then the DevOps architecture is the solution to fix the gap between

deployment and operation terms; therefore, delivery can be faster.

o DevOps architecture is used for the applications hosted on the cloud platform and

large distributed applications. Agile Development is used in the DevOps

architecture so that integration and delivery can be contiguous. When the

development and operations team works separately from each other, then it is

time-consuming to design, test, and deploy. And if the terms are not in sync with

each other, then it may cause a delay in the delivery. So DevOps enables the teams

to change their shortcomings and increases productivity.

o Below are the various components that are used in the DevOps architecture:

o

o 1) Build
o Without DevOps, the cost of the consumption of the resources was evaluated

based on the pre-defined individual usage with fixed hardware allocation. And with

DevOps, the usage of cloud, sharing of resources comes into the picture, and the

build is dependent upon the user's need, which is a mechanism to control the

usage of resources or capacity.

o 2) Code
o Many good practices such as Git enables the code to be used, which ensures

writing the code for business, helps to track changes, getting notified about the

reason behind the difference in the actual and the expected output, and if

necessary reverting to the original code developed. The code can be appropriately

arranged in files, folders, etc. And they can be reused.

o 3) Test

o The application will be ready for production after testing. In the case of manual

testing, it consumes more time in testing and moving the code to the output. The

testing can be automated, which decreases the time for testing so that the time to

deploy the code to production can be reduced as automating the running of the

scripts will remove many manual steps.

o 4) Plan
o DevOps use Agile methodology to plan the development. With the operations and

development team in sync, it helps in organizing the work to plan accordingly to

increase productivity.

o 5) Monitor
o Continuous monitoring is used to identify any risk of failure. Also, it helps in

tracking the system accurately so that the health of the application can be checked.

The monitoring becomes more comfortable with services where the log data may

get monitored through many third-party tools such as Splunk.

o 6) Deploy
o Many systems can support the scheduler for automated deployment. The cloud

management platform enables users to capture accurate insights and view the

optimization scenario, analytics on trends by the deployment of dashboards.

o 7) Operate
o DevOps changes the way traditional approach of developing and testing

separately. The teams operate in a collaborative way where both the teams actively

participate throughout the service lifecycle. The operation team interacts with

developers, and they come up with a monitoring plan which serves the IT and

business requirements.

o 8) Release
o Deployment to an environment can be done by automation. But when the

deployment is made to the production environment, it is done by manual

triggering. Many processes involved in release management commonly used to do

the deployment in the production environment manually to lessen the impact on

the customers.

o DevOps Lifecycle
o DevOps defines an agile relationship between operations and Development. It is a

process that is practiced by the development team and operational engineers

together from beginning to the final stage of the product.

o
o Learning DevOps is not complete without understanding the DevOps lifecycle

phases. The DevOps lifecycle includes seven phases as given below:

o 1) Continuous Development
o This phase involves the planning and coding of the software. The vision of the

project is decided during the planning phase. And the developers begin

developing the code for the application. There are no DevOps tools that are

required for planning, but there are several tools for maintaining the code.

o 2) Continuous Integration
o This stage is the heart of the entire DevOps lifecycle. It is a software development

practice in which the developers require to commit changes to the source code

more frequently. This may be on a daily or weekly basis. Then every commit is built,

and this allows early detection of problems if they are present. Building code is not

only involved compilation, but it also includes unit testing, integration testing,

code review, and packaging.

o The code supporting new functionality is continuously integrated with the existing

code. Therefore, there is continuous development of software. The updated code

needs to be integrated continuously and smoothly with the systems to reflect

changes to the end-users.

o
o Jenkins is a popular tool used in this phase. Whenever there is a change in the Git

repository, then Jenkins fetches the updated code and prepares a build of that

code, which is an executable file in the form of war or jar. Then this build is

forwarded to the test server or the production server.

o 3) Continuous Testing
o This phase, where the developed software is continuously testing for bugs. For

constant testing, automation testing tools such as TestNG, JUnit, Selenium, etc

are used. These tools allow QAs to test multiple code-bases thoroughly in parallel

to ensure that there is no flaw in the functionality. In this phase, Docker Containers

can be used for simulating the test environment.

o
o Selenium does the automation testing, and TestNG generates the reports. This

entire testing phase can automate with the help of a Continuous Integration tool

called Jenkins.

o Automation testing saves a lot of time and effort for executing the tests instead of

doing this manually. Apart from that, report generation is a big plus. The task of

evaluating the test cases that failed in a test suite gets simpler. Also, we can

schedule the execution of the test cases at predefined times. After testing, the code

is continuously integrated with the existing code.

o 4) Continuous Monitoring
o Monitoring is a phase that involves all the operational factors of the entire DevOps

process, where important information about the use of the software is recorded

and carefully processed to find out trends and identify problem areas. Usually, the

monitoring is integrated within the operational capabilities of the software

application.

o It may occur in the form of documentation files or maybe produce large-scale data

about the application parameters when it is in a continuous use position. The

system errors such as server not reachable, low memory, etc are resolved in this

phase. It maintains the security and availability of the service.

o 5) Continuous Feedback
o The application development is consistently improved by analyzing the results

from the operations of the software. This is carried out by placing the critical phase

of constant feedback between the operations and the development of the next

version of the current software application.

o The continuity is the essential factor in the DevOps as it removes the unnecessary

steps which are required to take a software application from development, using it

to find out its issues and then producing a better version. It kills the efficiency that

may be possible with the app and reduce the number of interested customers.

o 6) Continuous Deployment
o In this phase, the code is deployed to the production servers. Also, it is essential to

ensure that the code is correctly used on all the servers.

o

o The new code is deployed continuously, and configuration management tools play

an essential role in executing tasks frequently and quickly. Here are some popular

tools which are used in this phase, such as Chef, Puppet, Ansible, and SaltStack.

o Containerization tools are also playing an essential role in the deployment

phase. Vagrant and Docker are popular tools that are used for this purpose. These

tools help to produce consistency across development, staging, testing, and

production environment. They also help in scaling up and scaling down instances

softly.

o Containerization tools help to maintain consistency across the environments where

the application is tested, developed, and deployed. There is no chance of errors or

failure in the production environment as they package and replicate the same

dependencies and packages used in the testing, development, and staging

environment. It makes the application easy to run on different computers.

o 7) Continuous Operations
o All DevOps operations are based on the continuity with complete automation of

the release process and allow the organization to accelerate the overall time to

market continuingly.

o It is clear from the discussion that continuity is the critical factor in the DevOps in

removing steps that often distract the development, take it longer to detect issues

and produce a better version of the product after several months. With DevOps,

we can make any software product more efficient and increase the overall count of

interested customers in your product.

DevOps Workflow

DevOps workflow provides a visual overview of the sequence in which input is provided.

Also, it tells about which one action is performed, and output is generated for an

operations process.

Polymorphism in Java | Dynamic Method Dispatch

DevOps workflow allows the ability to separate and arrange the jobs which are top

requested by the users. Also, it gives the ability to mirror their ideal process in the

configuration jobs.

DevOps Principles

The main principles of DevOps are Continuous delivery, automation, and fast reaction to

the feedback.

1. End to End Responsibility: DevOps team need to provide performance support

until they become the end of life. It enhances the responsibility and the quality of

the products engineered.

2. Continuous Improvement: DevOps culture focuses on continuous improvement

to minimize waste. It continuously speeds up the growth of products or services

offered.

3. Automate Everything: Automation is an essential principle of the DevOps

process. This is for software development and also for the entire infrastructure

landscape.

4. Custom Centric Action: DevOps team must take customer-centric for that they

should continuously invest in products and services.

5. Monitor and test everything: The DevOps team needs to have robust monitoring

and testing procedures.

6. Work as one team: In the DevOps culture role of the designers, developers, and

testers are already defined. All they needed to do is work as one team with

complete collaboration.

These principles are achieved through several DevOps practices, which include frequent

deployments, QA automation, continuous delivery, validating ideas as early as possible,

and in-team collaboration.

DevOps Practices

Some identified DevOps practices are:

o Self-service configuration

o Continuous build

o Continuous integration

o Continuous delivery

o Incremental testing

o Automated provisioning

o Automated release management

DevOps Tools

Here are some most popular DevOps tools with brief explanation shown in the below

image, such as:

Polymorphism in Java | Dynamic Method Dispatch

1) Puppet

Puppet is the most widely used DevOps tool. It allows the delivery and release of the

technology changes quickly and frequently. It has features of versioning, automated

testing, and continuous delivery. It enables to manage entire infrastructure as code

without expanding the size of the team.

Features

o Real-time context-aware reporting.

o Model and manage the entire environment.

o Defined and continually enforce infrastructure.

o Desired state conflict detection and remediation.

o It inspects and reports on packages running across the infrastructure.

o It eliminates manual work for the software delivery process.

o It helps the developer to deliver great software quickly.

2) Ansible

Ansible is a leading DevOps tool. Ansible is an open-source IT engine that automates

application deployment, cloud provisioning, intra service orchestration, and other IT tools.

It makes it easier for DevOps teams to scale automation and speed up productivity.

Ansible is easy to deploy because it does not use

any agents or custom security infrastructure on the client-side, and by pushing modules

to the clients. These modules are executed locally on the client-side, and the output is

pushed back to the Ansible server.

Features

o It is easy to use to open source deploy applications.

o It helps in avoiding complexity in the software development process.

o It eliminates repetitive tasks.

o It manages complex deployments and speeds up the development process.

3) Docker

Docker is a high-end DevOps tool that allows building, ship, and run distributed

applications on multiple systems. It also helps to assemble the apps quickly from the

components, and it is typically suitable for container management.

Features

o It configures the system more comfortable and faster.

o It increases productivity.

o It provides containers that are used to run the application in an isolated

environment.

o It routes the incoming request for published ports on available nodes to an active

container. This feature enables the connection even if there is no task running on

the node.

o It allows saving secrets into the swarm itself.

4) Nagios

Nagios is one of the more useful tools for DevOps. It can determine the errors and rectify

them with the help of network, infrastructure, server, and log monitoring systems.

Features

o It provides complete monitoring of desktop and server operating systems.

o The network analyzer helps to identify bottlenecks and optimize bandwidth

utilization.

o It helps to monitor components such as services, application, OS, and network

protocol.

o It also provides to complete monitoring of Java Management Extensions.

5) CHEF

A chef is a useful tool for achieving scale, speed, and consistency. The chef is a cloud-

based system and open source technology. This technology uses Ruby encoding to

develop essential building blocks such as recipes and cookbooks. The chef is used in

infrastructure automation and helps in reducing manual and repetitive tasks for

infrastructure management.

Chef has got its convention for different building blocks, which are required to manage

and automate infrastructure.

Features

o It maintains high availability.

o It can manage multiple cloud environments.

o It uses popular Ruby language to create a domain-specific language.

o The chef does not make any assumptions about the current status of the node. It

uses its mechanism to get the current state of the machine.

6) Jenkins

Jenkins is a DevOps tool for monitoring the execution of repeated tasks. Jenkins is a

software that allows continuous integration. Jenkins will be installed on a server where the

central build will take place. It helps to integrate project changes more efficiently by

finding the issues quickly.

Features

o Jenkins increases the scale of automation.

o It can easily set up and configure via a web interface.

o It can distribute the tasks across multiple machines, thereby increasing

concurrency.

o It supports continuous integration and continuous delivery.

o It offers 400 plugins to support the building and testing any project virtually.

o It requires little maintenance and has a built-in GUI tool for easy updates.

7) Git

Git is an open-source distributed version control system that is freely available for

everyone. It is designed to handle minor to major projects with speed and efficiency. It is

developed to co-ordinate the work among programmers. The version control allows you

to track and work together with your team members at the same workspace. It is used as

a critical distributed version-control for the DevOps tool.

Features

o It is a free open source tool.

o It allows distributed development.

o It supports the pull request.

o It enables a faster release cycle.

o Git is very scalable.

o It is very secure and completes the tasks very fast.

8) SALTSTACK

Stackify is a lightweight DevOps tool. It shows real-time error queries, logs, and more

directly into the workstation. SALTSTACK is an ideal solution for intelligent orchestration

for the software-defined data center.

Features

o It eliminates messy configuration or data changes.

o It can trace detail of all the types of the web request.

o It allows us to find and fix the bugs before production.

o It provides secure access and configures image caches.

o It secures multi-tenancy with granular role-based access control.

o Flexible image management with a private registry to store and manage images.

9) Splunk

Splunk is a tool to make machine data usable, accessible, and valuable to everyone. It

delivers operational intelligence to DevOps teams. It helps companies to be more secure,

productive, and competitive.

Features

o It has the next-generation monitoring and analytics solution.

o It delivers a single, unified view of different IT services.

o Extend the Splunk platform with purpose-built solutions for security.

o Data drive analytics with actionable insight.

10) Selenium

Selenium is a portable software testing framework for web applications. It provides an

easy interface for developing automated tests.

Features

o It is a free open source tool.

o It supports multiplatform for testing, such as Android and ios.

o It is easy to build a keyword-driven framework for a WebDriver.

o It creates robust browser-based regression automation suites and tests.

DevOps Automation

Automation is the crucial need for DevOps practices, and automate everything is the

fundamental principle of DevOps. Automation kick starts from the code generation on

the developers machine, until the code is pushed to the code and after that to monitor

the application and system in the production.

Polymorphism in Java | Dynamic Method Dispatch

Automating infrastructure set up and configurations, and software deployment is the key

highlight of DevOps practice. DevOps practice id is dependent on automation to make

deliveries over a few hours and make frequent deliveries across platforms.

Automation in DevOps boosts speed, consistency, higher accuracy, reliability, and

increases the number of deliveries. Automation in DevOps encapsulates everything right

from the building, deploying, and monitoring.

DevOps Automation Tools

In large DevOps team that maintain extensive massive IT infrastructure can be classified

into six categories, such as:

o Infrastructure Automation

o Configuration Management

o Deployment Automation

o Performance Management

o Log management

o Monitoring

Below are few tools in each of these categories let see in brief, such as:

Infrastructure Automation

Amazon Web Services (AWS): Being a cloud service, you don't need to be physically

present in the data center, they are easy to scale on-demand, and there are no up-front

hardware costs. It can be configured to provide more servers based on traffic

automatically.

Configuration Management

Chef: Chef is a handy DevOps tool for achieving speed, scale, and consistency. It can be

used to ease out of complex tasks and perform configuration management. With the help

of this tool, the DevOps team can avoid making changes across ten thousand servers.

Rather, they need to make changes in one place, which is automatically reflected in other

servers.

Deployment Automation

Jenkins: It facilitates continuous integration and testing. It helps to integrate project

changes more efficiently by quickly finding issues as soon as built is deployed.

Performance Management

App Dynamic: It offers real-time performance monitoring. The data collected by this tool

help developers to debug when issues occur.

Log Management

Splunk: This DevOps tool solves issues such as storing, aggregating, and analyzing all

logs in one place.

Monitoring

Nagios: It notified people when infrastructure and related service go down. Nagios is a

tool for this purpose, which helps the DevOps team to find and correct problems.

DevOps Engineers

DevOps Engineer is an IT professional who works with system operators, software

developers, and other production IT staff to administer code releases.

Polymorphism in Java | Dynamic Method Dispatch

DevOps engineer understands the software development lifecycle and various

automation tools for developing digital pipelines.

DevOps have hard as well as soft skills to communicate and collaborate with development,

testing, and operations teams.

DevOps engineers need to code occasionally from scratch, and they must have the basics

of software development languages.

The DevOps engineer will work with development team staff to tackle the coding and

scripting needed to connect elements of code, like libraries or software development kits.

A bachelor's degree in computer science or related fields is generally required for DevOps

engineers. Many companies prefer those who have a master's degree and at least three

to five years of work experience in this field. HTTP, HTML, CSS, SSL, XML, Linux, Java,

Amazon Web Services (AWS), NoSQL technologies, DNS, and web app development.

DevOps Engineer Roles and Responsibilities

DevOps engineers work full time. They are responsible for the production and continuing

maintenance of a software application platform.

Below are some roles, responsibilities, and skills which are expected from DevOps

engineers, such as:

o Manage projects effectively through an open standard based platform.

o Increases project visibility through traceability.

o Improve quality and reduce the development cost with collaboration.

o DevOps should have the soft skill of problem solver and a quick learner.

o Analyze, design, and evaluate automation scripts and systems.

o Able to perform system troubleshooting and problem-solving across the platform

and application domains.

o Ensuring the critical resolution of system issues by using the best cloud security

solution services.

DevOps Engineers Salary

The DevOps Engineers salary estimates are based on two reports of salaries, wages,

bonuses, and hourly pay.

Here is a list of DevOps engineers salary according to the most recent DevOps engineer

salary report, such as:

DevOps Pipeline

A pipeline in software engineering team is a set of automated processes which allows

DevOps professionals and developer to reliably and efficiently compile, build, and deploy

their code to their production compute platforms.

Polymorphism in Java | Dynamic Method Dispatch

The most common components of a pipeline in DevOps are build automation or

continuous integration, test automation, and deployment automation.

A pipeline consists of a set of tools which are classified into the following categories such

as:

o Source control

o Build tools

o Containerization

o Configuration management

o Monitoring

Continuous Integration Pipeline

Continuous integration (CI) is a practice in which developers can check their code into a

version-controlled repository several times per day. Automated build pipelines are

triggered by these checks which allows fast and easy to locate error detection.

Some significant benefits of CI are:

o Small changes are easy to integrate into large codebases.

o More comfortable for other team members to see what you have been working.

o Fewer integration issues allowing rapid code delivery.

o Bugs are identified early, making them easier to fix, resulting in less debugging

work.

Continuous Delivery Pipeline

Continuous delivery (CD) is the process that allows operation engineers and developers

to deliver bug fixes, features, and configuration change into production reliably, quickly,

and sustainably. Continuous delivery offers the benefits of code delivery pipelines, which

are carried out that can be performed on demand.

Some significant benefits of the CD are:

o Faster bug fixes and features delivery.

o CD allows the team to work on features and bug fixes in small batches, which

means user feedback received much quicker. It reduces the overall time and cost

of the project.

DevOps Methodology

We have a demonstrated methodology that takes an approach to cloud adoption. It

accounts for all the factors required for successful approval such as people, process, and

technology, resulting in a focus on the following critical consideration:

o The Teams: Mission or project and cloud management.

o Connectivity: Public, on-premise, and hybrid cloud network access.

o Automation: Infrastructure as code, scripting the orchestration and deployment

of resources.

o On-boarding Process: How the project gets started in the cloud.

o Project Environment: TEST, DEV, PROD (identical deployment, testing, and

production).

o Shared Services: Common capabilities provided by the enterprise.

o Naming Conventions: Vital aspect to track resource utilization and billing.

o Defining Standards Role across the Teams: Permissions to access resources by

job function.

Azure DevOps

Azure DevOps is also known as Microsoft visual studio team services (VSTS). It is a set of

collaborative development tools built for the cloud. VSTS was commonly used as a

standalone term, and Azure DevOps is a platform which is made up of a few different

products, such as:

Polymorphism in Java | Dynamic Method Dispatch

o Azure Test Plans

o Azure Boards

o Azure Repos

o Azure Pipeline

o Azure Artifacts

Azure DevOps is everything that needs to turn an idea into a working piece software. You

can plan a project with azure tools.

The azure pipeline is the CI component of azure DevOps. The azure pipeline is Microsoft's

cloud-native continuous integration server, which allows teams to continuously build, test,

and deploy all from the cloud. An azure pipeline can connect to any number of source

code repositories such as Azure Repos, GitHub, Tests, to grab code and artifacts for

application delivery.

Azure DevOps Server

Azure DevOps Server is a Microsoft product that provides version control, requirements

management, reporting, lab management, project management, testing, automated

builds, and release management capabilities. It covers the entire application of lifecycle

and enables DevOps capabilities.

Azure DevOps can be used as a back-end to the numerous integrated development

environments, but it is modified for Microsoft visual studio and eclipse on all platforms.

Azure DevOps Services

Microsoft announced the release of the software as a service offering of visual studio on

the Microsoft Azure platform at the time Microsoft called it a visual studio online.

Microsoft offers visual studio, basic, and stakeholder subscriber access levels for the Azure

DevOps services. The basic plan is free of cost for up to five users. Users with a visual

studio subscription can be added to a project with no additional charge.

AWS DevOps

AWS is the best cloud service provider, and DevOps is the implementation of the software

development lifecycle.

Polymorphism in Java | Dynamic Method Dispatch

Here are some reasons which make AWS DevOps a highly popular combination, such as:

o AWS CloudFormation

o AWS EC2

o AWS CloudWatch

o AWS CodePipeline

Let's see all of these by one in brief such as:

AWS CloudFormation

DevOps team is required to create and release cloud instances and services more

frequently in comparison to development teams. Templates of AWS resources such as

EC2 instances, ECS containers, and S3 storage buckets let you set up the entire stack

without having to bring everything together.

AWS EC2

You can run containers inside EC2 instances. Hence you can leverage the AWS security

and management features.

AWS CloudWatch

This monitoring tool tracks every resource that AWS has to offer. It makes it easy to use

third-party tools for monitoring such as sumo logic etc.

AWS CodePipeline

Code Pipeline is an essential feature from AWS, which highly simplifies the way you

manage your CI/CD toolset. It integrates with tools such as Jenkins, GitHub, and

CodeDeploy that enable you to visually control the flow of app updates from build to

production.

DevOps Training Certification

DevOps training certification helps anyone to make a career as a DevOps engineer.

DevOps certifications are available from Red Hat, Amazon web services, DevOps

institution, and Microsoft academy.

OOPs Concepts in Java

Let's see all of these certifications one by one in brief such as:

Red Hat Certification

Red Hat offers a different level of certifications for DevOps professional as follows:

o Red Hat certificate of expertise in the Ansible automation.

o Red Hat certificate of expertise in Platform-as-a-service.

o Red Hat certificate of expertise in Container Administrator.

o Red Hat certificate of expertise in Configuration Management.

o Red Hat certificate of expertise in the Containerized Application Development.

Amazon Web Service Certification

This certificate tests you on how to use the most common DevOps patterns to develop,

deploy, and maintain applications on AWS. It also evaluates you on the core principle of

the DevOps methodology.

Amazon web service certificate has two requisites. First, the certification fee is $300, and

the second time duration is 170 minutes.

DevOps Institution

The DevOps institution is a global learning community around emerging DevOps

practices. This organization is setting the quality standards for DevOps competency-based

qualifications.

Some offered certification courses are:

o DevOps Leader

o DevOps Test Engineer

o DevOps Foundation Certified

o DevOps Foundation

o Certified Agile Process Owner

o Certified Agile Service Manager

o Continuous Delivery Architecture

o DevSecOps Engineer

evOps vs Agile

DevOps and Agile are the two software development methodologies with similar aims,

getting the end-product as quickly and efficiently as possible. While many organizations

are hoping to employ these practices, there is often some confusion between both

methodologies.

OOPs Concepts in Java

What does each methodology enclose? Where do they overlap? Can they work together,

or should we choose one over the other?

Before move further, take a glance at DevOps and Agile.

What is DevOps?

The DevOps is a combination of two words, one is software Development, and second is

Operations. This allows a single team to handle the entire application lifecycle, from

development to testing, deployment, and operations. DevOps helps you to reduce the

disconnection between software developers, quality assurance (QA) engineers, and

system administrators.

DevOps promotes collaboration between Development and Operations team to deploy

code to production faster in an automated & repeatable way.

DevOps helps to increase organization speed to deliver applications and services. It also

allows organizations to serve their customers better and compete more strongly in the

market.

DevOps can also be defined as a sequence of development and IT operations with better

communication and collaboration.

DevOps has become one of the most valuable business disciplines for enterprises or

organizations. With the help of DevOps, quality, and speed of the application delivery

has improved to a great extent.

DevOps is nothing but a practice or methodology of making "Developers" and

"Operations" folks work together. DevOps represents a change in the IT culture with a

complete focus on rapid IT service delivery through the adoption of agile practices in the

context of a system-oriented approach.

What is Agile?

The Agile involves continuous iteration of development and testing in the SDLC process.

Both development and testing activities are concurrent, unlike the waterfall model. This

software development method emphasizes on incremental, iterative, and evolutionary

development.

It breaks the product into small pieces and integrates them for final testing. It can be

implemented in many ways, such as Kanban, XP, Scrum, etc.

The Agile software development focus on the four core values, such as:

o Working software over comprehensive documentation.

o Responded to change over following a plan.

o Customer collaboration over contract negotiation.

o Individual and team interaction over the process and tools.

Below are some essential differences between the DevOps and Agile:

Bash for DevOps

In the early days of computing, the computer that processed data or performed

operations was separate from the tool that gave it the instructions to do the processing.

OOPs Concepts in Java

On the one hand, a terminal was used to send commands to the computer. On the other

hand, we have a computer, which is hardware that processes the commands.

Today, some computers can provide commands AND perform computation via Graphical

User Interface (GUI). However, accessing the command line or terminal can often be more

efficient than using GUIs for certain tasks.

We can send commands via the terminal to programmatically accomplish these tasks. For

example, working with files in the terminal is faster and more efficient than working with

files in a graphical environment like windows explorer. We can also use the terminal to

launch and execute open, reproducible tasks such as Jupyter Notebook, Python, and GIT.

Before knowing about Bash, we need to learn what a shell is. Shell is the primary program

computers use to receive commanding code. These commands can be entered and

executed via the terminal, which allows us to control the computer by typing commands

with the keyboard, Instead of using buttons or dropdown menus in the GUI with the

mouse or keyboard.

Bash

Bash is also known as the "Bourne Again Shell." It is the implementation of the shell

which allows us to perform many tasks efficiently. We can quickly use Bash to perform

operations on multiple files via the command line. We can also write and execute scripts

in Bash as in Python, which can be executed across different operating systems. Using

Bash in a terminal is a powerful way of interacting with computers, GUIs, and command

lines. Bash is complementary; by knowing both, we can greatly expand the range of tasks

we can accomplish with our computer.

With Bash commands, we can perform many tasks efficiently and automate and replicate

the workforce across operating systems like Linux, Windows, etc.

The common tasks we can run on the command line include the following:

1. Checking and working on the current directory.

2. Changing the directory.

3. Making a new directory.

4. Extracting files.

5. Finding files on our computer.

Features of Bash

Working with terminal Bash provides us to:

1. Easily navigate our computer to access and manage files and folders. That is, we

can easily navigate computer directories. We can work with many files and

directories quickly and efficiently at once.

2. We can also run programs that provide more functionality at the command line,

like GIT.

3. We can also launch programs from a specific directory on our computer, like a

Jupyter Notebook.

4. Finally, with the help of Bash, we use repeatable commands for these tasks across

many different operating like Windows, Mac, and Linux.

Before DevOps

It was a waterfall model and a traditional approach to building solutions. It is called

waterfall because we bring out all the individual requirements and individual sections of

a project and cascade off each other.

What is DevOps

DevOps is a collaboration between development and operation teams, enabling

continuous delivery of applications and services to our end users.

Benefits of DevOps

Let us discuss some of the benefits of DevOps. They are:

1. Continuous delivery of software. It allows us to continuously release new features

with the security and understanding that the software is high quality.

2. It allows the teams working on the software delivery within our organization to

collaborate more effectively.

3. The deployment process moves from an event with a lot of stress and contingency

plans to a much easier deployment.

4. The efficiency within the actual code that we are writing is the ability to scale up

using the different tools available allows us to bring in and scale up and reduce the

teams we have running the software as needed.

5. Errors can be fixed much earlier and quickly and caught before anything gets

pushed out to the production environment.

6. We were looking to improve the security of the actual releases. So the actual

concept of security is the center of all the work.

7. Finally, what allows us to reduce the number of errors is that there is much less

manual intervention. There is greater reliance on scripted environments that we

can test and validate for their security, reliability, and efficiency.

Brian Fox created the Unix shell and command language Bash for the GNU Project as a

free software substitute for the Bourne shell. It was first made accessible in 1989, and since

then, most Linux distributions, Apple's macOS Mojave, and earlier versions have

adopted it as their default login shell. A variant is likewise accessible for Windows 10 and

the default client shell in Solaris 11.

Slam is an order processor that commonly runs in a text window where the client types

orders that cause activities. Slam can likewise peruse and execute orders from a shell script

document. Like all Unix shells, it upholds filename globbing (trump card coordinating),

funneling, here reports, order replacement, fact7ors, and control structures for condition-

testing and cycle. The watchwords, linguistic structure, powerfully perused factors, and

other fundamental language highlights are completely replicated from sh. Different

highlights, e.g., history, are duplicated from csh and ksh. Slam is a POSIX-consistent shell,

yet with various expansions.

The shell, which is a play on the name of the Bourne shell it replaces and the idea of

being "born again," is an acronym for Bourne Again Shell.

A safety opening in Slam dating from variant 1.03 (August 1989), named Shellshock, was

found toward the beginning of September 2014 and immediately prompted a scope of

assaults across the Web. Patches to fix the bugs were made accessible not long after the

bugs were distinguished.

Bash Scripting in DevOps

So every Management in development should master a scripting language as their first

skill to help them handle servers, software, and hardware. They are fundamental to the

growth of learning and are quite potent. There is still usage of Bash, yes. If you look at a

normal Linux or UNIX system, you'll observe that it comes with several shell scripts.

Most contemporary Linux distributions still make use of Bash. It is the default shell for

most system initialization, including the system V init scripts. It is a scripting language for

the shell; you must know it to maintain a Linux server. Making GUI apps is hard, but it's

worthwhile.

I have used the scripts for the specified objectives, amongst many others.

You may write a script to initialize anything as the system boots. Hence, manual

labor is not required.

1. To enable/disable certain features, you may create a script that installs each need

individually and builds the code based on user input.

2. We are combining the killing or starting from several programs.

3. Identify some patterns in a big database of files by observing it.

4. As a result, the list of things to automate continues.

5. Incredible uses

The bootup scripts (/etc/init.d)

1. For automating many computer maintenance tasks, such as user account creation,

etc., technical staff.

2. Tools for downloading software packages, More information

3. Startup scripts for programs, particularly for unattended programs (e.g., started

from cron or at)

4. Every user requiring automation

Why would someone use Bash?

Like other CLIs, Bash is used by computer programs that demand accuracy while handling

files and data, especially when there are many. Data has to be searched, sorted, processed,

or in some other way. Among the most typical uses for Bash are:

1. System admins use Bash to manage systems methodically and consistently.

System administrators use Bash to get into systems and examine system

configurations and internet connectivity to debug systems that are not performing

as planned or expected. Moreover, system administrators use Bash scripts to

maintain and set up systems, monitor operating systems, and distribute software

patches and updates.

2. Bash is used for many development tasks by software professionals. Bash is used

for many development activities by software professionals.

3. Using Bash, automating software development chores like code compilation,

source code debugging, change Management, and software testing is possible.

4. To test, configure, and improve network performance on business

networks, network engineers utilize Bash.

5. Bash is a programming language that computer scientists use to administer

research systems and conduct research on them.

6. To communicate with their computers, run applications, and manage them, power

users and hobbyists alike utilize Bash.

Bash may be used to build shell scripts in addition to being often used interactively. A

Bash script can be utilized to automate almost any computer process, and Bash scripts

can be run immediately or on a routine basis.

How, in all actuality, does Bash work?

From the outset, Slam gives off an impression of being a straightforward order/reaction

framework, where clients enter orders, and Slam returns the outcomes after those orders

are run. In any case, Slam is likewise a programming stage, and clients are empowered to

compose programs that acknowledge information and produce yield utilizing shell orders

in shell scripts.

One of the essential slam orders, ls, does a certain something: list catalog contents.

Without anyone else, this order records the names of documents and subdirectories in

the ongoing working registry.

The ls order has various boundaries that alter how the outcomes are shown. A few

frequently utilized boundaries utilized with the ls order include:

-l

Utilize a more drawn-out, nitty gritty posting configuration to incorporate record

consents, document proprietor, gathering, size, and date/season of creation.

-a

List all records and subdirectories, even those customarily expected to be covered.

-s

Show the size of each document.

-h

Show record and subdirectory sizes in comprehensible arrangement utilizing K, M, G, etc.,

to demonstrate kilobytes, megabytes, and gigabytes.

-R

It tells us the Recursive posting of all documents and subdirectories under the ongoing

working catalog.

By using the output with one command as the input for another, Bash makes it possible

to combine commands. Even with the -R argument to specify that the listing ought to be

recursive, for example, one might use this command to list every file on a file system:

1. user@hostname:/$ 1s -1ashR

The above command returns too many records for humans to understand, especially from

the system root directory easily.

The grep command only returns files and subdirectories with filenames that contain the

specified text pattern when the pipe symbol (vertical bar, or "|") is used to funnel output

from the directory listing into it. This order:

This program may be used to find a specific file since it only returns files with the text:

1. user@hostname:/$ 1s -1ashR |grep 'filename.txt'

By using the bash command line, it is considerably simpler to perform the following

interactively:

managing files and directories; monitoring network configuration;

We are modifying a configuration file (or any other text file) and comparing two files.

Examples

Some examples of bash commands are:

o Basic commands are often executed either alone or in conjunction with arguments

and variables. For instance, the ls command accepts variables for the directories or

files listed in addition to arguments.

o Pipes connect the output of one or more commands to the input of other

commands.

o Lists are used to allow users to execute several instructions sequentially.

o Compound commands facilitate script writing and include conditional structures

and loops (for repeating a command a certain amount of times).

o One unique bash feature that isn't always accessible with other CLIs is command-

line editing. By hitting the up arrow key, Bash's command history may be retrieved.

So, it makes it simpler to execute a command again exactly. These previous

commands can also be changed at the command line by copying, pasting, deleting,

or changing a previous command using special keys.

o The usage of Bash requires some initial understanding for new users because it is

one of the fundamental tools for current system and network management. A

system administrator from 1992 who traveled through time and learned Bash could

resume working on a modern Linux system immediately.

What is Bash Mechanization?

The Bash shell is a strong Linux shell that permits top-to-bottom robotization of tedious

undertakings. Not exclusively is the Bash Linux shell a superb decision for DevOps. Still,

data sets and test designs are the same; consistently, clients can profit from gradually

scholarly, steadily expanding Bash abilities. Bash is likewise a prearranging and coding

language that develops on you. We have been effectively coding in Bash beginning

around 2012 and have utilized it significantly longer than that.

Bash additionally fits a wide range of use spaces and use cases. For instance, you can

undoubtedly use it for Huge Information taking care, and shockingly it appears to loan

itself incredibly well to this undertaking because of the horde of text-handling instruments

accessible inside it or accessible as simple to introduce bundles. It is also extremely

appropriate for reinforcement and information base planning and support, dealing with

enormous record stockpiling arrangements, computerizing web servers, and more.

At whatever point the following issue introduces itself, a little exploration in a web crawler,

or the different Stackoverflow sites, will rapidly yield an answer for the issue, yet a possible

chance to develop and learn. So, it is very much like insight to an individual learning the

manager vi where similar holds; at whatever point an issue introduces itself, the

arrangement is close by.

This smaller-than-usual series comprises three pieces, which is first; in it, we will check out

Bash robotization and prearranging essentials.

Terraform Destroy Command

Terraform is an open-source infrastructure as code (IaC) tool. It enables users to manage

infrastructure resources declaratively. It allows the user to define, provision, and operate

cloud resources across multiple providers using a single configuration file. One of the

most important commands in Terraform is "terraform destroy." This command is used to

delete all the resources created using the Terraform configuration. In this article, we are

going to learn briefly the Terraform destroy command, how it works, and some examples

to help you understand its usage.

OOPs Concepts in Java

What is Terraform Destroy Command?

Terraform destroy command is used to remove all the resources that were created using

the Terraform configuration. It is the opposite of the "terraform apply" command. The

terraform apply command is used to create resources. The destroy command removes all

the resources specified in the configuration files and will prompt the user for confirmation

before deleting the resources.

When to Use Terraform Destroy Command?

There is some scenario where we can use terraform destroy command. These are as

follows.

1. When the user wants to delete specific resources that are no longer required or

have been replaced by new ones, we use destroy command.

2. When the user wants to destroy the entire infrastructure stack, including the

networking, computing, and storage resources, then we use destroy command.

3. When the user wants to delete all the resources created using Terraform, we use

destroy command to clean up the environment or start over with a new

configuration.

How does Terraform Destroy Command Work?

There are some ways by which we can implement the terraform destroy command. These

ways are as follows.

1. First, the terraform reads the Terraform configuration files to determine the

resources that need to be deleted.

2. Then it prompts the user for confirmation before deleting the resources.

3. After the user's confirmation, it deletes the resources in the reverse order of their

creation so that resources depending on other resources are deleted last.

4. After deleting the resources, It updates the Terraform state file to remove the

deleted resources from the state.

Example of Terraform Destroy Command

Let's take an example to understand briefly the terraform destroy command.

1. First, we have to create a new directory, and then we have to navigate to that directory.

This can be done by the below commands.

1. mkdir my-terraform && cd my-terraform

2. Then we have to create a new terraform configuration file and name it "main.tf". Then

we have to write the below code in the "main.tf" file.

1. provider "aws" {

2.

3. region = "us-east-1"

4. }

5.

6. resource "aws_instance" example" {

7.

8. ami = "ami-0c55b159cbfafe1f0"

9.

10. instance_type = "t2.micro"

11. }

This code creates an AWS EC2 instance with the help of specified AMI and instance type.

3. Then we have to initialize the working directory with the help of the below commands.

1. terraform init

4. Then we have to create the resources with the help of the below commands.

1. terraform apply

5. Then we have to verify the instances that were created previously. That can be done by

the below commands.

1. terraform show

6. Then we have to delete the resources with the help of the below commands.

1. terraform destroy

Then a confirmation is prompted for the user before deleting the resource. When the user

approves it at that moment, the resources are successfully destroyed.

Advantages of Terraforming Destroy Command

There are some advantages of terraforming destroy command. These are as below.

1. Easy cleanup: The Terraform destroy command makes it easy to clean up the

resources that were created using Terraform. This helps to avoid cluttering your

infrastructure with unused resources.

2. Efficiency: The Terraform destroy command removes all the resources in one go

without leaving any errors. This saves time and ensures that resources are removed

efficiently.

3. Cost savings: Removing unused resources can save you money on cloud provider

bills. The Terraform destroy command helps you to identify and remove these

resources.

4. Consistency: The Terraform destroy command helps to maintain consistency in

your infrastructure by removing all resources that were created by Terraform.

Disadvantages of Terraforming Destroy Command

There are some disadvantages of terraforming destroy command. These are as below.

1. Accidental destruction: The Terraform destroy command can lead to the

accidental destruction of resources if used incorrectly. It'sIt's important to use this

command with caution and double-check the resources that will be destroyed.

2. Data loss: If the user is not careful, then the user can lose data by accidentally

destroying resources that contain important data. It'sIt's important to make

backups of data before using the Terraform destroy command.

3. Time-consuming: Destroying resources can take a long time, depending on the

number and complexity of the resources. This can be an inconvenience when the

user needs to quickly clean up resources.

4. Dependency issues: The Terraform destroy command can have dependency

issues, where a resource cannot be destroyed because it'sit's dependent on

another resource. This can cause problems with cleanup and may require

additional work to resolve.

Terraform For Loop

Terraform is an infrastructure-as-code (IaC) tool. It is used to create and manage

infrastructure resources in a declarative way. It enables the user to define the

infrastructure as a code and automates creating and managing infrastructure resources.

One of the most useful features of Terraform is the ability to use loops in the code to

create and manage multiple resources at once. In this article, we are going to explore

Terraform loops, including their syntax, examples, advantages, and disadvantages.

OOPs Concepts in Java

Terraform Loops

Terraform loops allow the user to iterate over a set of values and create multiple resources

with the same configuration. There are two types of loops supported by Terraform:

for_each and count.

1. For_Each Loop

The for_each loop creates multiple resources with the same configuration, each with a

unique name or ID. It works by iterating over a map or set of strings, and for each item in

the map or set; it creates a new resource.

Syntax

1. resource "resource_type" "resource_name" {

2. for_each = {key1 = value1, key2 = value2, ...}

3. # Resource configuration here

4. }

Example

1. variable "regions" {

2. type = list(string)

3. default = ["us-west-1", "us-west-2", "us-east-1"]

4. }

5.

6. resource "aws_instance" "ec2" {

7. for_each = toset(var.regions)

8. ami = "ami-0c55b159cbfafe1f0"

9. instance_type = "t2.micro"

10. subnet_id = "subnet-123456"

11. availability_zone = "${each.value}a"

12. }

13.

14. output "instance_public_ips" {

15. value = {

16. for instance_id, instance in aws_instance.ec2 :

17. instance.id => instance.public_ip

18. }

19. }

Output:

Explanation

In the above example, we use a for_each loop to create an EC2 instance in each region

specified in the region's variable. The for_each loop is applied to the aws_instance

resource and creates an instance for each element in the regions list.

The output block uses a for expression to create a mapping of instance IDs to public IP

addresses. This output is useful for debugging or verifying the instances that were created.

2. Count Loop

The count loop is used to create a fixed number of resources with the same configuration.

It defines a numeric count value and creates a new resource for each count value.

Syntax:

1. resource "resource_type" "resource_name" {

2. count = number_of_resources

3. # Resource configuration here

4. }

Example

1. variable "count" {

2. default = 3

3. }

4.

5. resource "aws_instance" "example" {

6.

7. count = var.count

8. ami = "ami-0c55b159cbfafe1f0"

9.

10. instance_type = "t2.micro"

11. }

12.

13. output "public_ips" {

14. value = [

15. for instance in aws_instance.example : instance.public_ip

16.]

17. }

18.

19. output "print_public_ips" {

20. value = [

21. for instance in aws_instance.example : "Instance ${instance.id} public IP: ${insta

nce.public_ip}"

22.]

23. }

Output:

Explanation

o In the above example, we take a variable called "count" with a default value of 3.

Then we create multiple instances of an EC2 instance using the count loop with the

specified AMI and instance type.

o Next, we define two outputs with the help of the output block. The first output,

"public_ips," outputs an array of the public IP addresses of the created instances.

We use a for loop with the "aws_instance.example" resource to iterate over each

instance and extract its public IP.

o The second output, "print_public_ips," outputs an array of strings containing each

instance's ID and public IP address. We use a similar for loop to iterate over each

instance and create a string that combines the instance ID and public IP address.

Advantages of Terraform Loops

There is some benefit to using the terraform loop. These are as follows.

1. Increased efficiency: Terraform loops allow users to create multiple resources in

a single code block with the same configuration. This can save time and increase

efficiency when managing large numbers of resources.

2. Improved readability: Terraform loops can make the code more readable and

easier to understand by reducing the amount of repetitive code needed to create

multiple resources.

3. Simplified resource management: Terraform loops can simplify the process of

managing resources by allowing the user to group related resources together in a

single block of code.

Disadvantages of Terraform Loops

There are also some disadvantages to using the terraform loop. These are as follows.

1. Complexity: Terraform loops can add complexity to the code. Suppose the user is

unfamiliar with the syntax and logic required to use them effectively.

2. Limited functionality: While Terraform loops can be powerful, they are limited in

their ability to handle complex use cases. In some cases, the user may need to use

a combination of loops and other Terraform features to achieve the desired

outcome.

3. Lack of flexibility: Terraform loops are not always flexible enough to handle

dynamic changes to your infrastructure. For example, if the user needs to add or

remove resources from a loop, you may need to modify the loop's configuration,

re-run the Terraform plan, and apply commands.

Terraform Format

Terraform is an open-source infrastructure-as-code tool. It allows the developer to define

and manage their infrastructure declaratively. This means that the developer can describe

their infrastructure with the help of a high-level language, and Terraform will create,

modify, and delete the necessary resources to achieve the desired state.

OOPs Concepts in Java

One of the most important aspects of using Terraform is understanding its format. In this

article, we are going to explore the Terraform format, including its syntax, examples, and

best practices.

Terraform Syntax

Terraform uses its own domain-specific language (DSL) to describe infrastructure. The

language is based on HashiCorp Configuration Language (HCL), designed to be both

human-readable and machine-friendly.

The syntax of Terraform files consists of blocks, arguments, and values. Blocks are also

called resources or modules, arguments are also known for the properties of those

resources or modules, and values are the actual values of those properties.

For example, with the help of the below command, we can create a simple Terraform file

that creates an AWS EC2 instance:

1. provider "aws" {

2.

3. region = "us-west-2"

4. }

5.

6. resource "aws_instance" "example" {

7.

8. ami = "ami-0c55b159cbfafe1f0"

9.

10. instance_type = "t2.micro"

11. }

In the above file, the provider block defines the AWS provider and region to use, while

the resource block defines the EC2 instance to create. The AMI and instance_type

arguments define the instance's properties, and the values for those properties are

provided on the right-hand side of the equals sign.

Terraform Examples

Terraform can manage a wide range of infrastructure resources, including compute

instances, networking components, databases, and more.

Below are examples of terraforming.

1. Creating an Azure virtual machine:

Program

1. provider "azurerm" {

2. features {}

3. }

4.

5. resource "azurerm_resource_group" "example" {

6. name

7. = "example-resource-group"

8. location = "westus2"

9. }

10.

11. resource "azurerm_virtual_network" "example" {

12. name = "example-vnet"

13. address_space = ["10.0.0.0/16"]

14. location = azurerm_resource_group.example.location

15. resource_group_name = azurerm_resource_group.example.name

16. }

17.

18. resource "azurerm_subnet" "example" {

19. name = "example-subnet"

20. resource_group_name = azurerm_resource_group.example.name

21. virtual_network_name = azurerm_virtual_network.example.name

22. address_prefixes = ["10.0.1.0/24"]

23. }

24.

25. resource "azurerm_network_interface" "example" {

26. name = "example-nic"

27. location = azurerm_resource_group.example.location

28. resource_group_name = azurerm_resource_group.example.name

29.

30. ip_configuration {

31. name = "example-ipconfig"

32. subnet_id = azurerm_subnet.example.id

33. private_ip_address_allocation = "Dynamic"

34. }

35. }

36.

37. resource "azurerm_virtual_machine" "example" {

38. name = "example-vm"

39. location = azurerm_resource_group.example.location

40. resource_group_name = azurerm_resource_group.example.name

41. network_interface_ids = [azurerm_network_interface.example.id]

42. vm_size = "Standard_DS1_v2"

43.

44. storage_image_reference {

45. publisher = "Canonical"

46. offer

47. = "UbuntuServer"

48. sku

49. = "18.04-LTS"

50. version

51. = "latest"

52. }

53.

54. storage_os_disk {

55. name = "example-osdisk"

56. caching = "ReadWrite"

57. create_option = "FromImage"

58. }

59. }

60.

61. output "vm_ip_address" {

62. value = azurerm_network_interface.example.private_ip_address

63. }

Output:

Explanation

The above program creates a virtual machine in Azure with the help of the following

resources:

o A resource group

o A virtual network with a subnet

o A network interface with an IP configuration

o A virtual machine with reference to the network interface and an OS disk created

from the specified image.

The output block at the end of the code specifies the private IP address of the network

interface, which can be printed to the console using the terraform output command after

running terraform apply.

Terraform Best Practices

When the programmer is working with Terraform, it is important to follow best practices

to ensure the infrastructure is secure, scalable, and maintainable. Here are a few best

practices to keep in mind:

1. The programmer must Use modules to modularize your code and promote reuse.

2. The programmer must Use variables and parameterized modules to make the code

more flexible.

3. The programmer must Use version control to manage the Terraform code and

collaborate with others.

4. The programmer must Use Terraform Cloud or Enterprise to manage the state and

execute Terraform runs.

5. The programmer must Use Terraform's built-in functionality to manage secrets and

sensitive data, such as the sensitive argument or the terraform.tfvars file.

Advantages of Terraform

There are some advantages of using Terraform. These are as follows.

1. Declarative language: It uses declarative language to define infrastructure, which

makes it easier to understand and maintain.

2. Multi-cloud support: It supports multiple cloud providers, allowing the

programmer to manage infrastructure across different clouds with the same tool.

3. Modular design: it allows the programmer to create reusable modules that can

be used across different projects, making it easier to standardize infrastructure.

4. Version control: the code can be versioned with popular tools like Git, allowing

the programmer to track changes and collaborate with other team members.

5. Infrastructure as code: it allows the programmer to treat infrastructure as code,

which means the programmer can version, test, and deploy infrastructure changes

just like the programmer does with application code.

Disadvantages of Terraform

There are also some disadvantages of using the terraform. These are as follows.

1. Learning curve: It has a steep learning curve, especially if the programmer is new

to infrastructure such as code or declarative languages.

2. Limited functionality: While Terraform can manage many different types of

resources, some advanced features are still unavailable.

3. Dependencies: Terraform resources can have dependencies on other resources,

which can make it difficult to manage changes or deletions.

4. State management: Terraform requires managing state files, which can be

challenging when working with a team or in a distributed environment.

5. Complexity: Terraform can become complex when managing large or complex

infrastructures, which can make it difficult to debug or troubleshoot issues.

Terraform Output Command

Terraform is a widely used infrastructure-as-code (IaC) tool .it allows the programmer to

define, provision, and manage cloud resources in a declarative manner. One of the

powerful features of Terraform is the "output" command, which helps the programmer

extract and share values from the Terraform configurations. In this article, we are going

to learn about the Terraform output command, including its purpose, syntax, usage, and

examples, to help you understand how to leverage this powerful tool in the IaC workflows.

OOPs Concepts in Java

Purpose of Terraform Output Command

The main purpose of Terraform output command is to expose values from the Terraform

configurations. These output values can be dynamically generated during provisioning or

retrieved from existing resources. Then these Outputs can be used to capture information

such as resource IDs, IP addresses, DNS names, or any other relevant data that the

programmer may need to use in subsequent Terraform configurations, scripts, or tools.

Those Outputs provide a way to make the outputs of the infrastructure deployments

accessible and usable outside of Terraform, allowing for greater flexibility and integration

with other parts of the infrastructure ecosystem.

Syntax of Terraform Output Command

The terraform output command can be written with the help of the below command.

1. output "<name>" {

2. value = <expression>

3. }

In the above syntax:

o <name>:-It is a unique name for the output, which can consist of letters, numbers,

underscores, and hyphens.

o <expression>:- It is the value or expression that the programmer wants to expose

as the output. This can be a reference to a Terraform resource or data source, a

computed value, or a combination of multiple values using interpolation syntax.

Usage of Terraform Output Command

When the programmer wants to utilize the functionality of Terraform output command,

then the programmer just has to include the code in the Terraform configuration file (.tf)

within a module or root module block. After applying the Terraform configuration using

the terraform apply command, the programmer can view the values of the outputs using

the terraform output command followed by the <name> of the output.

Examples of Terraform Output Command

Let's understand the output command with the help of some examples.

Program 1 (Extracting VPC ID)

Let's consider the scenario in which the programmer deals with an Amazon Web Services

(AWS) VPC with Terraform, and the programmer want to extract the VPC ID for further

use in the infrastructure. Here's an example of how the programmer can use the Terraform

output command to perform the operation:

Code

1. resource "aws_vpc" "example" {

2. cidr_block = "10.0.0.0/16"

3.

4. tags = {

5. Name = "example-vpc"

6. }

7. }

8.

9. output "vpc_id" {

10. value = aws_vpc.example.id

11. }

Output:

Explanation

The above program defines an AWS VPC resource named "example" with a given CIDR

block and tags. We then define an output called "vpc_id" that references the "id" attribute

of the "aws_vpc.example" resource. This makes the VPC ID available as an output that can

be accessed using the "vpc_id" name.

Program 2 (Composing Output Values)

Code

1. resource "aws_vpc" "example" {

2. cidr_block = "10.0.0.0/16"

3.

4. tags = {

5. Name = "example-vpc"

6. }

7. }

8.

9. resource "aws_subnet" "example_subnet" {

10. count = 2

11.

12. cidr_block = "10.0.${100 + count.index.index}.0/24"

13. vpc_id = aws_vpc.example.id

14.

15. tags = {

16. Name = "example-subnet-${count.index.index + 1}"

17. }

18. }

19.

20. output "subnet_ids" {

21. value = aws_subnet.example_subnet.*.id

22. }

23.

24. output "subnet_cidr_blocks" {

25. value = aws_subnet.example_subnet.*.cidr_block

26. }

Output:

Explanation

In the above code, we define an AWS VPC with a given CIDR block and tags and two AWS

subnets with dynamically generated CIDR blocks and tags. We then define two outputs:

"subnet_ids" and "subnet_cidr_blocks." The "subnet_ids" output uses the

aws_subnet.example_subnet.*.id reference to capture the IDs of all the subnets created by

the "example_subnet" resource. The "subnet_cidr_blocks" output uses the

aws_subnet.example_subnet.*.cidr_block reference to capture the CIDR blocks of all the

subnets. These outputs can be accessed and used in subsequent Terraform configurations

or scripts.

Benefits of Using Terraform Output Command

There is also some benefit of using the terraform output command. These are as follows.

1. Reusability: The Outputs command allows the programmer to capture and reuse

values from the Terraform configurations in subsequent configurations or scripts.

This provides a feature to reuse and reduces code duplication, making the IaC code

more modular and maintainable.

2. Flexibility: The Output command provide a way to make the outputs of the

infrastructure deployments accessible and usable outside of Terraform. This

command also allows for greater flexibility in integrating with other parts of the

infrastructure ecosystem, such as provisioning tools, configuration management

systems, or monitoring and logging solutions.

3. Dynamicity: The Output command is also evaluated during the Terraform apply

command, which means that they can capture dynamically generated values or

computed values based on the current state of your infrastructure. This makes

outputs a powerful tool for extracting and managing dynamic information in your

IaC workflows.

4. Clarity: The Output command also allows the programmer to expose specific

values from the Terraform configurations and clarify what information is intended

to be used outside of Terraform. This enhances the readability and maintainability

of your IaC code, as it provides a clear separation of concerns between the inputs

and outputs of the infrastructure.

5. Debugging: The Output command can also be used for debugging and

troubleshooting. The programmer can use the Terraform output command to view

the values of outputs after applying the Terraform configuration, helping the

programmer to verify that the expected values are being generated and used

correctly in your infrastructure.

Best Practice

There are some important points that the programmer should keep in mind during the

use of terraform commands.

1. We must ensure the output names are clear, descriptive, and reflect the output

value. This will help make the IaC code more readable and maintainable.

2. The Interpolation syntax allows the programmer to combine values from multiple

resources or data sources, generating more complex outputs. This can help the

programmer to capture and reuse more specific and dynamic information from the

infrastructure.

3. Sensitive outputs are used when using the terraform output command. It helps the

programmer protect secret or private information from being exposed. Also, we

have to ensure to mark sensitive outputs appropriately using the sensitive = true

argument.

4. The documentation and comments in the IaC code need to explain what each

output value represents, how it is generated, and how it can be used. This will help

others who work with the code understand its purpose and usage.

Terraform Output

Terraform is a popular Infrastructure as Code (IaC) tool. It enables users to automate cloud

resource provisioning, configuration, and management across multiple cloud platforms.

It is also an open-source tool that supports various cloud providers such as AWS, Google

Cloud, Azure, and many more. One of the essential features of Terraform is the ability to

output the results of the infrastructure creation process.

In this article, we are going to learn Terraform output with examples and its advantages

and disadvantages.

Terraform Output

Terraform output is a command that is used to display the values of resources created

during the Terraform provisioning process. The command is used to retrieve the attributes

of a resource and returns the values that can be accessed and used by other tools or

scripts. It is also a valuable feature as it enables automating different processes or scripts

that require access to the created resources.

The output command in Terraform is a simple command that can be executed from the

command line interface (CLI). The output values are stored in a state file, and the state file

can be accessed and used by other tools or scripts.

Example

1. provider "aws" {

2. region = "us-west-2"

3. }

4.

5. resource "aws_instance" "example" {

6. ami = "ami-0c55b159cbfafe1f0"

7. instance_type = "t2.micro"

8.

9. tags = {

10. Name = "example-instance"

11. }

12. }

13.

14. output "instance_id" {

15. value = aws_instance.example.id

16. }

17.

18. output "public_ip" {

19. value = aws_instance.example.public_ip

20. }

Output:

Explanation

The above Terraform code creates an AWS EC2 instance in the us-west-2 region using an

ami-0c55b159cbfafe1f0 Amazon Machine Image (AMI) and a t2.micro instance type. It

also shows an output variable named "instance_id" and that output variable retrieves the

ID of the created EC2 instance. When Terraform is run with Terraform applied, it creates

the EC2 instance and displays the output variable "instance_id" with the value of the

created EC2 instance ID.

Advantages

There are several advantages of terraform output. These are as follows.

1. Automation: It enables the automation of other processes or scripts that require

access to the created resources. The output values can be used as inputs for

additional tools or scripts, thereby simplifying the process of managing cloud

infrastructure.

2. Consistency: It also ensures that the infrastructure is consistent across all

environments. The output values are stored in the state file, which is versioned and

stored in a central location. This ensures that the infrastructure is consistent across

all environments, including development, staging, and production.

3. Reusability: It also makes it easy to reuse infrastructure resources. The output

values can be used as inputs for other Terraform modules, making it easy to reuse

infrastructure resources across different projects.

Disadvantages:

Terraform output has some disadvantages. These are listed below:

1. Security: If we do not properly secure the information, then there may be a chance

of exposing sensitive information if not properly secured. The output values can

include sensitive information such as access keys, passwords, and secrets. Ensuring

the state file contains the output values is essential to prevent unauthorized access.

2. Complexity: Terraform output can add complexity to the Terraform configuration

file. The output variables must be defined correctly, and the syntax must be correct.

This can make the Terraform configuration file more complex and challenging to

manage.

Terraform tfstate

When we are using Terraform to manage infrastructure as code, tfstate is an important

thing that cannot be ignored. Tfstate files contain critical information about the

infrastructure and its state. The management of tfstate is very important for effective

infrastructure management. In this article, we are going to learn what Terraform tfstate is,

why it is important, and how to manage it effectively.

OOPs Concepts in Java

What is Terraform tfstate?

Terraform tfstate is a JSON file that contains information about the current state of

infrastructure that Terraform manages. It also contains the details of the resources that

has created, modified, or destroyed by terraform in a particular environment. Tfstate files

also include metadata, and that metadata describes the resources' dependencies and

relationships, which Terraform uses to manage infrastructure changes effectively.

Why is Terraform tfstate Important?

Tfstate files are very much essential for several reasons. Firstly, they help Terraform to

track the current state of the infrastructure and identify changes that have occurred since

the last deployment. This enables Terraform to determine which resources need to be

created, updated, or destroyed to bring the infrastructure to the desired state.

Secondly, tfstate files help Terraform to manage infrastructure changes safely and

effectively. Terraform uses the information in the tfstate file to calculate the changes

required to bring the infrastructure to the desired state. Terraform then applies these

changes in the correct order, considering any dependencies or relationships between

resources.

Finally, tfstate files are essential for collaboration between multiple team members or

across different environments. Tfstate files provide a consistent view of the infrastructure

state, ensuring that all team members are working with the same information. They also

enable team members to work on different parts of the infrastructure simultaneously

without conflicts.

Managing Terraform tfstate:

The Terraform tfstate can be managed effectively to ensure infrastructure changes are

handled safely and efficiently. There are some best practices for managing Terraform

tfstate.

1. Use a remote backend: One of the best ways to manage tfstate is to use a remote

backend. A remote backend stores the tfstate file in a remote location, such as AWS

S3 or Azure Blob Storage. This helps multiple team members to access the tfstate

file from different locations, making collaboration easier. It also ensures that the

tfstate file is stored securely and can be easily recovered if necessary.

2. Version control of the tfstate file: It is essential to use version control in the

tfstate file to track changes over time. This enables team members to see who

made changes, when they were made and why they were made. It also allows the

team to revert to previous versions of the tfstate file if necessary.

3. Lock tfstate files: Tfstate files should be locked to prevent multiple team members

from making changes simultaneously. Locking the tfstate file helps that only one

team member can make changes at a time.

4. Use remote state data sources: Using remote state data sources enables the

programmer to reference resources created by other Terraform configurations.

This is particularly useful while managing complex infrastructure. It also allows the

programmer to reference resources across different configurations and

environments.

5. Use state backups: Regularly backing up the tfstate file ensures that it can be

easily recovered if necessary. Backups should be stored in a secure location and

regularly tested to ensure they can be restored if required

Advantages of Terraform tfstate

There are some advantages of using terraform tfstate. These are as follows.

1. Accurate Tracking of Infrastructure State: The tfstate file can track the current

state of the infrastructure accurately. Terraform uses this information to identify

the changes required to bring the infrastructure to the desired state, making it

easier to manage infrastructure changes safely and effectively.

2. Safe Infrastructure Changes: Tfstate files can enable Terraform to manage

infrastructure changes safely and effectively. Terraform uses the information in the

tfstate file to calculate the required modifications and apply them in the correct

order, ensuring that dependencies and relationships between resources are

considered.

3. Collaboration: Tfstate files also can enable team members to work on different

parts of the infrastructure simultaneously without conflicts. They provide a

consistent view of the infrastructure state, ensuring that all team members are

working with the same information.

4. Disaster Recovery: Backing up the tfstate file regularly ensures that it can be easily

recovered if necessary, minimizing downtime in the event of a disaster.

Disadvantages of Terraform tfstate

There are also some disadvantages of using terraform tfstate. These disadvantages are as

follows,

1. Complexity: When the developer wants to manage large and complex

infrastructure, at that time, it becomes more complex and large in size. So

Managing the tfstate files effectively requires significant knowledge and

experience with Terraform.

2. Security: It also contains sensitive information about the infrastructure, making it

a potential security risk. So It is very much essential to store tfstate files securely

and manage access control to ensure that only authorized personnel can access

them.

3. Version Control: Version controlling the tfstate file can be more challenging,

especially when managing multiple environments and configurations. So It is very

much essential to implement robust version control processes to ensure that

changes are tracked accurately and effectively.

4. Locking: The programmer needs to Lock the tfstate file so that it can result in

conflicts if team members need to make changes simultaneously. It is essential to

implement effective locking processes to minimize the risk of conflicts

Git Tutorial

Git tutorial provides basic and advanced concepts of Git and GitHub. Our Git tutorial is

designed for beginners and professionals.

Git is a modern and widely used distributed version control system in the world. It is

developed to manage projects with high speed and efficiency. The version control system

allows us to monitor and work together with our team members at the same workspace.

This tutorial will help you to understand the distributed version control system Git via the

command line as well as with GitHub. The examples in this tutorial are performed

on Windows, but we can also perform same operations on other operating systems

like Linux (Ubuntu) and MacOS.

What is Git?

Git is an open-source distributed version control system. It is designed to handle

minor to major projects with high speed and efficiency. It is developed to co-ordinate the

work among the developers. The version control allows us to track and work together

with our team members at the same workspace.

Git is foundation of many services like GitHub and GitLab, but we can use Git without

using any other Git services. Git can be used privately and publicly.

Git was created by Linus Torvalds in 2005 to develop Linux Kernel. It is also used as an

important distributed version-control tool for the DevOps.

Git is easy to learn, and has fast performance. It is superior to other SCM tools like

Subversion, CVS, Perforce, and ClearCase.

Features of Git

Some remarkable features of Git are as follows:

o Open Source

Git is an open-source tool. It is released under the GPL (General Public License)

license.

o Scalable

Git is scalable, which means when the number of users increases, the Git can easily

handle such situations.

o Distributed

One of Git's great features is that it is distributed. Distributed means that instead

of switching the project to another machine, we can create a "clone" of the entire

repository. Also, instead of just having one central repository that you send

changes to, every user has their own repository that contains the entire commit

history of the project. We do not need to connect to the remote repository; the

change is just stored on our local repository. If necessary, we can push these

changes to a remote repository.

o Security

Git is secure. It uses the SHA1 (Secure Hash Function) to name and identify

objects within its repository. Files and commits are checked and retrieved by its

checksum at the time of checkout. It stores its history in such a way that the ID of

particular commits depends upon the complete development history leading up

to that commit. Once it is published, one cannot make changes to its old version.

o Speed

Git is very fast, so it can complete all the tasks in a while. Most of the git operations

are done on the local repository, so it provides a huge speed. Also, a centralized

version control system continually communicates with a server somewhere.

Performance tests conducted by Mozilla showed that it was extremely fast

compared to other VCSs. Fetching version history from a locally stored repository

is much faster than fetching it from the remote server. The core part of

Git is written in C, which ignores runtime overheads associated with other high-

level languages.

Git was developed to work on the Linux kernel; therefore, it is capable enough

to handle large repositories effectively. From the

beginning, speed and performance have been Git's primary goals.

o Supports non-linear development

Git supports seamless branching and merging, which helps in visualizing and

navigating a non-linear development. A branch in Git represents a single commit.

We can construct the full branch structure with the help of its parental commit.

o Branching and Merging

Branching and merging are the great features of Git, which makes it different

from the other SCM tools. Git allows the creation of multiple branches without

affecting each other. We can perform tasks like creation, deletion,

and merging on branches, and these tasks take a few seconds only. Below are

some features that can be achieved by branching:

o We can create a separate branch for a new module of the project, commit

and delete it whenever we want.

o We can have a production branch, which always has what goes into

production and can be merged for testing in the test branch.

o We can create a demo branch for the experiment and check if it is working.

We can also remove it if needed.

o The core benefit of branching is if we want to push something to a remote

repository, we do not have to push all of our branches. We can select a few

of our branches, or all of them together.

o Data Assurance

The Git data model ensures the cryptographic integrity of every unit of our

project. It provides a unique commit ID to every commit through a SHA

algorithm. We can retrieve and update the commit by commit ID. Most of the

centralized version control systems do not provide such integrity by default.

o Staging Area

The Staging area is also a unique functionality of Git. It can be considered as

a preview of our next commit, moreover, an intermediate area where commits

can be formatted and reviewed before completion. When you make a commit, Git

takes changes that are in the staging area and make them as a new commit. We

are allowed to add and remove changes from the staging area. The staging area

can be considered as a place where Git stores the changes.

Although, Git doesn't have a dedicated staging directory where it can store some

objects representing file changes (blobs). Instead of this, it uses a file called index.

Another feature of Git that makes it apart from other SCM tools is that it is

possible to quickly stage some of our files and commit them without

committing other modified files in our working directory.

o Maintain the clean history

Git facilitates with Git Rebase; It is one of the most helpful features of Git. It fetches

the latest commits from the master branch and puts our code on top of that. Thus,

it maintains a clean history of the project.

Benefits of Git

A version control application allows us to keep track of all the changes that we make in

the files of our project. Every time we make changes in files of an existing project, we can

push those changes to a repository. Other developers are allowed to pull your changes

from the repository and continue to work with the updates that you added to the project

files.

Some significant benefits of using Git are as follows:

o Saves Time

Git is lightning fast technology. Each command takes only a few seconds to execute

so we can save a lot of time as compared to login to a GitHub account and find

out its features.

o Offline Working

One of the most important benefits of Git is that it supports offline working. If we

are facing internet connectivity issues, it will not affect our work. In Git, we can do

almost everything locally. Comparatively, other CVS like SVN is limited and prefer

the connection with the central repository.

o Undo Mistakes

One additional benefit of Git is we can Undo mistakes. Sometimes the undo can

be a savior option for us. Git provides the undo option for almost everything.

o Track the Changes

Git facilitates with some exciting features such as Diff, Log, and Status, which

allows us to track changes so we can check the status, compare our files or

branches.

Why Git?

We have discussed many features and benefits of Git that demonstrate the undoubtedly

Git as the leading version control system. Now, we will discuss some other points about

why should we choose Git.

o Git Integrity

Git is developed to ensure the security and integrity of content being version

controlled. It uses checksum during transit or tampering with the file system to

confirm that information is not lost. Internally it creates a checksum value from the

contents of the file and then verifies it when transmitting or storing data.

o Trendy Version Control System

Git is the most widely used version control system. It has maximum

projects among all the version control systems. Due to its amazing workflow and

features, it is a preferred choice of developers.

o Everything is Local

Almost All operations of Git can be performed locally; this is a significant reason

for the use of Git. We will not have to ensure internet connectivity.

o Collaborate to Public Projects

There are many public projects available on the GitHub. We can collaborate on

those projects and show our creativity to the world. Many developers are

collaborating on public projects. The collaboration allows us to stand with

experienced developers and learn a lot from them; thus, it takes our programming

skills to the next level.

o Impress Recruiters

We can impress recruiters by mentioning the Git and GitHub on our resume. Send

your GitHub profile link to the HR of the organization you want to join. Show your

skills and influence them through your work. It increases the chances of getting

hired.

What is GitHub?

GitHub is a Git repository hosting service. GitHub also facilitates with many of its features,

such as access control and collaboration. It provides a Web-based graphical interface.

GitHub is an American company. It hosts source code of your project in the form of

different programming languages and keeps track of the various changes made by

programmers.

It offers both distributed version control and source code management

(SCM) functionality of Git. It also facilitates with some collaboration features such as bug

tracking, feature requests, task management for every project.

Java Collection MCQ Set 1

Features of GitHub

GitHub is a place where programmers and designers work together. They collaborate,

contribute, and fix bugs together. It hosts plenty of open source projects and codes of

various programming languages.

Some of its significant features are as follows.

o Collaboration

o Integrated issue and bug tracking

o Graphical representation of branches

o Git repositories hosting

o Project management

o Team management

o Code hosting

o Track and assign tasks

o Conversations

o Wikisc

Benefits of GitHub

GitHub can be separated as the Git and the Hub. GitHub service includes access controls

as well as collaboration features like task management, repository hosting, and team

management.

The key benefits of GitHub are as follows.

o It is easy to contribute to open source projects via GitHub.

o It helps to create an excellent document.

o You can attract recruiter by showing off your work. If you have a profile on GitHub,

you will have a higher chance of being recruited.

o It allows your work to get out there in front of the public.

o You can track changes in your code across versions.

Difference between git and gitHub

Programming language wordings are very intuitive these days. By hearing the name of a

particular language, we start imagining what all it will be.

Java and Javascript are very similar to the names ham and hamster, the logo of python is

intertwined with the image of snakes.

So, someone looking at git and github would find any apparent connection between

them. Let us see git and github in detail with the differences between them.

History of Java

Git

There are many words to define git, but it is an open-source distributed version control

system in simpler words.

Let us break each component in the definition and understand it.

o Open-source - A type of computer software released under a specific license. The

users are given permissions to use the code, modify the code, give suggestions,

clone the code to add new functionality. In other words, if the software is open-

source, it is developed collaboratively in a public manner. The open-source

softwares is cheaper, more flexible, and lasts longer than an authority or a

company. The products in the source code include code, documents, formats for

the users to understand and contribute to it. Using open-source a project can be

expanded to update or revise the current features. Unix and Linux are examples of

open-source softwares.

o Control system - The work of a control system is to track the content. In other

words, git is used to storing the content to provide the services and features to the

user.

o Version Control system - Just like an app has different updates due to bugs and

additional feature addition, version changes, git also supports this feature. Many

developers can add their code in parallel. So the version control system easily

manages all the updates that are done previously.

Git provides the feature of branching in which the updated code can be done, and

then it can be merged with the main branch to make it available to the users. It not

only makes everything organized but keeps synchronization among the developers

to avoid any mishap. Other examples of version control systems are Helix core,

Microsoft TFS, etc.

o Distributed version control system - Here distributed version control system

means if a developer contributes to open source, the code will also be available in

his remote repository. The developer changes his local repository and then creates

a pull request to merge his changes in the central repository. Hence, the word

distributed means the code is stored in the central server and stored in every

developer's remote system.

Why is git needed?

When a team works on real-life projects, git helps ensure no code conflicts between the

developers. Furthermore, the project requirements change often. So a git manages all the

versions. If needed, we can also go back to the original code. The concept of branching

allows several projects to run in the same codebase.

GitHub

By the name, we can visualize that it is a Hub, projects, communities, etc. GitHub is a Git

repository hosting service that provides a web-based graphical interface. It is the largest

community in the world. Whenever a project is open-source, that particular repository

gains exposure to the public and invites several people to contribute.

The source code of several projects is available on github which developers can use in any

means.

Using github, many developers can work on a single project remotely because it facilitates

collaboration.

Features of gitHub

o Using github the project managers can collaborate, review and guide the

developers regarding any changes. This makes project management easy.

o The github repositories can be made public or private. Thus allowing safety to an

organization in case of a project.

o GitHub has a feature of pull requests and issues in which all the developers can

stay on the same page and organize.

o All the codes and their documentation are in one place in the same repository.

Hence it makes easy code hosting.

o There are some special tools that github uses to identify the vulnerabilities in the

code which other softwares do not have. Hence there is safety among the

developers from code start till launch.

o Github is available for mobile and desktops. The UI is so user-friendly that it

becomes straightforward to get comfortable with and use it.

o Git vs SVN
o Apache Subversion or SVN is one of the most popular centralized version

control systems. Now, SVN's popularity is on the decrease, but there are still

millions of projects stored in it. It can continue to be actively maintained by an

open-source community. In SVN, you can check out a single version of the

repository. It stores data in a central server. The drawback of the SVN is, it has the

entire history on a local repository which limits you. You can only do commits, diffs,

logs, branches, merges, file annotations, etc.

o
o While, Git is a popular distributed version control system, which means that you

can clone your repository. Thus you can get a complete copy of your entire history

of that project. This means you can access all your commits.

o Git has more advantages than SVN. It is much better for those developers who

are not always connected to the master repository. Also, it is much faster than SVN.
o Method Overloading vs Overriding in Java

o To better understand the differences between Git and Subversion. Let's have a look

at following significance points.

Git vs Mercurial

Mercurial and Git both are two quite similar and most popular distributed version control

systems. Their strengths and weaknesses make them ideal for different use cases. Both

tools use a directed acyclic graph to store history.

Mercurial is a distributed source control management tool. It is free and open-source.

It can handle projects of any size and offers an easy and intuitive interface.

Today, Git has more than 31 million users and is owned by Microsoft. Since the last

decade, the Git has become the standard for most development projects.

Features of Java - Javatpoint

Mercurial still has a handful tool of large development organizations. Some software

development giants like Facebook, Mozilla, and World Wide Web Consortium are using

it. But it only has approx 2 % of the VCS market share. Comparatively, Git has covered

more than 80% market share.

Both version control systems, i.e., Mercurial and Git are distributed version control systems

(DVCS).

To better understand the similarities and differences between Git and Mercurial, let's have

a look at the following points.

Git Version Control System

A version control system is a software that tracks changes to a file or set of files over time

so that you can recall specific versions later. It also allows you to work together with other

programmers.

The version control system is a collection of software tools that help a team to manage

changes in a source code. It uses a special kind of database to keep track of every

modification to the code.

Developers can compare earlier versions of the code with an older version to fix the

mistakes.

Difference between JDK, JRE, and JVM

Benefits of the Version Control System

The Version Control System is very helpful and beneficial in software development;

developing software without using version control is unsafe. It provides backups for

uncertainty. Version control systems offer a speedy interface to developers. It also allows

software teams to preserve efficiency and agility according to the team scales to include

more developers.

Some key benefits of having a version control system are as follows.

o Complete change history of the file

o Simultaneously working

o Branching and merging

o Traceability

Types of Version Control System

o Localized version Control System

o Centralized version control systems

o Distributed version control systems

Localized Version Control Systems

The localized version control method is a common approach because of its simplicity. But

this approach leads to a higher chance of error. In this approach, you may forget which

directory you're in and accidentally write to the wrong file or copy over files you don't

want to.

To deal with this issue, programmers developed local VCSs that had a simple database.

Such databases kept all the changes to files under revision control. A local version control

system keeps local copies of the files.

The major drawback of Local VCS is that it has a single point of failure.

Centralized Version Control System

The developers needed to collaborate with other developers on other systems. The

localized version control system failed in this case. To deal with this problem, Centralized

Version Control Systems were developed.

These systems have a single server that contains the versioned files, and some clients to

check out files from a central place.

Centralized version control systems have many benefits, especially over local VCSs.

o Everyone on the system has information about the work what others are doing on

the project.

o Administrators have control over other developers.

o It is easier to deal with a centralized version control system than a localized version

control system.

o A local version control system facilitates with a server software component which

stores and manages the different versions of the files.

It also has the same drawback as in local version control system that it also has a single

point of failure.

Distributed Version Control System

Centralized Version Control System uses a central server to store all the database and

team collaboration. But due to single point failure, which means the failure of the central

server, developers do not prefer it. Next, the Distributed Version Control System is

developed.

In a Distributed Version Control System (such as Git, Mercurial, Bazaar or Darcs), the user

has a local copy of a repository. So, the clients don't just check out the latest snapshot of

the files even they can fully mirror the repository. The local repository contains all the files

and metadata present in the main repository.

DVCS allows automatic management branching and merging. It speeds up of most

operations except pushing and pulling. DVCS enhances the ability to work offline and

does not rely on a single location for backups. If any server stops and other systems were

collaborating via it, then any of the client repositories could be restored by that server.

Every checkout is a full backup of all the data.

These systems do not necessarily depend on a central server to store all the versions of a

project file.

Difference between Centralized Version Control System
and Distributed Version Control System

Centralized Version Control Systems are systems that use client/server architecture. In a

centralized Version Control System, one or more client systems are directly connected to

a central server. Contrarily the Distributed Version Control Systems are systems that

use peer-to-peer architecture.

There are many benefits and drawbacks of using both the version control systems. Let's

have a look at some significant differences between Centralized and Distributed version

control system.

How to Install Git on Windows

To use Git, you have to install it on your computer. Even if you have already installed Git,

it's probably a good idea to upgrade it to the latest version. You can either install it as a

package or via another installer or download it from its official site.

Now the question arises that how to download the Git installer package. Below is the

stepwise installation process that helps you to download and install the Git.

How to download Git?

Step1

Exception Handling in Java - Javatpoint

To download the Git installer, visit the Git's official site and go to download page. The link

for the download page is https://git-scm.com/downloads. The page looks like as

Click on the package given on the page as download 2.23.0 for windows. The download

will start after selecting the package.

Now, the Git installer package has been downloaded.

Install Git

Step2

Click on the downloaded installer file and select yes to continue. After the

selecting yes the installation begins, and the screen will look like as

Click on next to continue.

Step3

Default components are automatically selected in this step. You can also choose your

required part.

Click next to continue.

Step4

The default Git command-line options are selected automatically. You can choose your

preferred choice. Click next to continue.

Step5

The default transport backend options are selected in this step. Click next to continue.

Step6

Select your required line ending option and click next to continue.

Step7

Select preferred terminal emulator clicks on the next to continue.

Step8

This is the last step that provides some extra features like system caching, credential

management and symbolic link. Select the required features and click on the next option.

Step9

The files are being extracted in this step.

Therefore, The Git installation is completed. Now you can access the Git Gui and Git Bash.

The Git Gui looks like as

It facilitates with three features.

o Create New Repository

o Clone Existing Repository

o Open Existing Repository

The Git Bash looks like as

Install Git on Ubuntu

Git is an open-source distributed version control system that is available for everyone at

zero cost. It is designed to handle minor to major projects with speed and efficiency. It is

developed to co-ordinate the work among programmers. The version control allows you

to track and work together with your team members at the same workspace.

Git is the most common source code management (SCM) and covers more users than

earlier VCS systems like SVN. Let's understand how to install Git on your Ubuntu server.

Introduction to Git

Git focuses on data integrity, speed, and non-linear, distributed workflow support.

Originally, git was started in 2005 by Linus Torvalds for the Linux kernel development,

with other developers of the kernel contributing to its starting development. Junio

Hamano has been the main maintainer since 2005.

Unlike almost every client-server system, and with almost every distributed version control

system, all Git directories on all computers are a completely developed repository with

full version-tracking and history abilities, free from a central server or network access. Git

is an open-source and free software distributed upon the GPL-2.0-only license.

Brief History of Git

In April 2005, Git development started after several kernel developers gave up using

BitKeeper, an SCM (source control management) system they had been utilizing to

manage the project.

Linus Torvalds wished for a distributed system that could be used like BitKeeper, but the

available open-source systems don't meet his requirements. Torvalds specified an

instance of a source-control management system requiring thirty seconds to use a patch

and update every related metadata and esteemed that it wouldn't scale to the

requirements of the development of the Linux kernel, in which synchronizing with

associate maintainers could need 250 such operations at once. He cited that patching

shouldn't take 3+ seconds with his design principle and included three more purposes:

o Add robust safeguards opposed to corruption, either malicious or accidental.

o Support a BitKeeper-like, distributed workflow.

o Take CVS (Concurrent Versions System) as an instance of what not to do; make the

same opposite decision if not sure.

Design of Git

The design of Git was inspired by Monotone and BitKeeper. Originally Git was developed

as a low-level engine for the version control system, where others can specify front ends

like StGIT or Cogito.

Characteristics

The design of Git is the synthesis of the experience of Torvalds with Linux in managing a

bigger distributed development project with his file-system performance knowledge

gained from a similar project and the requirement to generate an active system. These

conditions led to the below implementation options:

o Non-linear development support: Git supports fast merging and

branching and contains special tools for navigating and visualizing a non-

linear development history. A basic thought is that modification will be

combined more frequently than it's written in Git because it's passed across

several reviewers. In Git, the branches are lightweight, and a branch is just a

reference to a single commit. The structure of a full branch can be made

using its parental commits.

o Distributed development: Like Monotone, Bazaar, Mercurial, BitKeeper,

and Darcs, Git provides all developers a copy of the complete development

history, and modifications are copied from such repositories to others.

o Compatibility with older protocols and systems: Repositories can be

released by a Git protocol, FTP, HTTP, or HTTPS on either a Secure Shell or

plain socket.

o Efficient handling of bigger projects: Torvalds has defined Git as being

very scalable and fast, and performance tests implemented by Mozilla

represented that it's an order of magnitude rapid differentiating bigger

repositories than GNU Bazaar and Mercurial.

o History cryptographic authentication: The history of Git is stored in a

form that the ID of a specific version relies on the full development history

causing that commit.

o Toolkit-based structure: Git was developed as a collection of programs

specified in C and many shell scripts that offer wrappers across these

programs. However, most of these scripts have been since re-specified in C

for portability and speed.

o Pluggable strategies: Git contains a well-defined structure of a lacking

merge, and it contains two or more algorithms to complete it as an element

of its toolkit structure.

Data structures

The primitives of Git are not a source-code management system inherently. Git has

integrated the full set of aspects expected of a classic SCM, with aspects mostly being

made as required, then refined and increased over time from this starting design

approach.

Git includes two different data structures. The first data structure is a mutable index (also

known as cache or stage) that caches details about the active directory and the upcoming

revision to be devoted. The second data structure is an append-only immutable object

database.

The immutable database includes five object types:

o Blob

o Tree

o Commit

o Tag

o Packfile

Git additionally stores labels known as refs (or references) to represent the location of

several commits. They are:

o Heads (branches)

o HEAD

o Tags

Git Installation

I have done this installation on Ubuntu 16.04 LTS. But the given commands should also

work with the other versions.

Below are the steps to install the Git on Ubuntu server:

Step1: Start the General OS and Package update

First of all, we should start the general OS and package updates. To do so, run the below

command:

1. $ apt-get update

Now we have started the general OS and package updates. After this, we will run the

general updates on the server so that we can get started with installing Git. To do so, run

the following commands:

Step2: Install Git

To install Git, run the below command:

1. $ apt-get install git-core

The above command will install the Git on your system, but it may ask you to confirm the

download and installation.

Step3: Confirm Git the installation

To confirm the installation, press 'y' key on the editor. Now, Git is installed and ready to

use.

When the central installation done, first check to ensure the executable file is set up and

accessible. The best way to do this is the git version command. It will be run as:

1. $ git --version

Output:

git version 2.24.0

Step4: Configure the Git for the First use

Now you can start using Git on your system. You can explore many features of the version

control system. To go with Git, you have to configure the initial user access process. It can

be done with the git config command.

Suppose I want to register a user whose user name is "javaTpoint" and email address is

"Javatpoint@xyz", then it will be done as follows:

To register a username, run the below command:

1. $ git config --global user.name "javaTpoint"

To register an email address for the given author, run the below command:

1. $ git config --global user.email "javatpoint@xyz"

Now, you have successfully registered a user for the version control system.

Install Git on Mac

There are multiple ways to install Git on mac. It comes inbuilt with Xcode or its other

command-line tools. To start the Git, open terminal and enter the below command:

1. $ git --version

The above command will display the installed version of Git.

Output:

Java Try Catch

git version 2.24.0 (Apple Git-66)

If you do not have installed it already, then it will ask you to install it.

Apple provides support for Git, but it lags by several major versions. We may install a

newer version of Git using one of the following methods:

Git Installer for Mac

This process is the simplest way to download the latest version of Git. Visit the official

page of git downloads. Choose the download option for Mac OS X.

The installer file will download to your system. Follow the prompts, choose the required

installer option. After the installation process completed, verify the installation was

successful by running the below command on the terminal:

1. $ git --version

The above command will display the installed version of Git. Consider the below output.

Output:

git version 2.24.0 (Apple Git-66)

Now, we have successfully installed the latest version on our mac OS. It's time to configure

the version control system for the first use.

To register a username, run the below command:

1. $ git config --global user.name "javaTpoint"

To register an email address for the given author, run the below command:

1. $ git config --global user.email "javatpoint@xyz"

To go in-depth with the git config command, visit Here.

Installation via MacPorts

Sometimes MacPorts also referred to DarwinPorts. It makes the straightforward

installation of software on the Mac OS and Darwin operating systems. If we have installed

MacPorts for managing packages on OS X, follow the below steps to install Git.

Step1: Update MacPorts

To update MacPorts, run the below command:

1. $ sudo port selfupdate

Step2: Search for the latest Ports

To search for the most recent available Git ports and variants, run the below command:

1. $ port search git

2. $ port variants git

The above command will search for the latest available port and options and will install it.

Step3: Install Git

To install Git, run the below command:

1. $ sudo port install git

We can also install some extra tools with Git. These tools may assist Git in different

manners. To Install Git with bash-completion, svn, and the docs, run the below command:

1. $ sudo port install git +svn +doc +bash_completion +gitweb

Now, we have successfully installed Git with the help of MacPorts on our system.

Step4: Configure Git

The next step for the first use is git configuration.

We will configure the Git username and email address as same as given above.

To register a username, run the below command:

1. $ git config --global user.name "javaTpoint"

To register an email address for the given author, run the below command:

1. $ git config --global user.email "javatpoint@xyz"

Install Git via Homebrew

Homebrew is used to make the software installation straight forward. If we have installed

Homebrew for managing packages on OS X, follow the below steps to go with Git:

Step1: install Git

Open the terminal and run the below command to install Git using Homebrew:

1. $ brew install git

The above command will install the Git on our machine. The next step is to verify the

installation.

Step2: Verify the installation

It is essential to ensure that whether the installation process has been succeeded or not.

To verify whether the installation has been successful or not, run the below command:

1. $ git --version

The above command will display the version that has been installed on your system.

Consider the below output:

git version 2.24.0

Step3: Configure Git

We will configure the Git username and email address same as given above.

To register a username, run the below command:

1. $ git config --global user.name "javaTpoint"

To register an email address for the given author, run the below command:

1. $ git config --global user.email "javatpoint@xyz"

Git Environment Setup

The environment of any tool consists of elements that support execution with software,

hardware, and network configured. It includes operating system settings, hardware

configuration, software configuration, test terminals, and other support to perform the

operations. It is an essential aspect of any software.

It will help you to understand how to set up Git for first use on various platforms so you

can read and write code in no time.

The Git config command

Git supports a command called git config that lets you get and set configuration

variables that control all facets of how Git looks and operates. It is used to set Git

configuration values on a global or local project level.

Abstract class in Java | Abstraction in Java

Setting user.name and user.email are the necessary configuration options as your name

and email will show up in your commit messages.

Setting username

The username is used by the Git for each commit.

1. $ git config --global user.name "Himanshu Dubey"

Setting email id

The Git uses this email id for each commit.

1. $ git config --global user.email "himanshudubey481@gmail.com"

There are many other configuration options that the user can set.

Setting editor

You can set the default text editor when Git needs you to type in a message. If you have

not selected any of the editors, Git will use your default system's editor.

To select a different text editor, such as Vim,

1. $ git config --global core.editor Vim

Checking Your Settings

You can check your configuration settings; you can use the git config --list command to

list all the settings that Git can find at that point.

1. $ git config -list

This command will list all your settings. See the below command line output.

Output

HiMaNshU@HiMaNshU-PC MINGW64 ~/Desktop

$ git config --list

core.symlinks=false

core.autocrlf=true

core.fscache=true

color.diff=auto

color.status=auto

color.branch=auto

color.interactive=true

help.format=html

rebase.autosquash=true

http.sslcainfo=C:/Program Files/Git/mingw64/ssl/certs/ca-bundle.crt

http.sslbackend=openssl

diff.astextplain.textconv=astextplain

filter.lfs.clean=git-lfs clean -- %f

filter.lfs.smudge=git-lfs smudge --skip -- %f

filter.lfs.process=git-lfs filter-process --skip

filter.lfs.required=true

credential.helper=manager

gui.recentrepo=C:/Git

user.email=dav.himanshudubey481@gmail.com

user.name=Himanshu Dubey

Colored output

You can customize your Git output to view a personalized color theme. The git config can

be used to set these color themes.

Color.ui

1. $ Git config -global color.ui true

The default value of color.ui is set as auto, which will apply colors to the immediate

terminal output stream. You can set the color value as true, false, auto, and always.

Git configuration levels

The git config command can accept arguments to specify the configuration level. The

following configuration levels are available in the Git config.

o local

o global

o system

--local

It is the default level in Git. Git config will write to a local level if no configuration option

is given. Local configuration values are stored in .git/config directory as a file.

--global

The global level configuration is user-specific configuration. User-specific means, it is

applied to an individual operating system user. Global configuration values are stored in

a user's home directory. ~ /.gitconfig on UNIX systems and C:\Users\\.gitconfig on

windows as a file format.

--system

The system-level configuration is applied across an entire system. The entire system

means all users on an operating system and all repositories. The system-level

configuration file stores in a gitconfig file off the system

directory. $(prefix)/etc/gitconfig on UNIX systems

and C:\ProgramData\Git\config on Windows.

The order of priority of the Git config is local, global, and system, respectively. It means

when looking for a configuration value, Git will start at the local level and bubble up to

the system level.

Git Tools

To explore the robust functionality of Git, we need some tools. Git comes with some of its

tools like Git Bash, Git GUI to provide the interface between machine and user. It supports

inbuilt as well as third-party tools.

Git comes with built-in GUI tools like git bash, git-gui, and gitk for committing and

browsing. It also supports several third-party tools for users looking for platform-specific

experience.

Git Package Tools

Git provides powerful functionality to explore it. We need many tools such as commands,

command line, Git GUI. Let's understand some essential package tools.

Package in Java

GitBash

Git Bash is an application for the Windows environment. It is used as Git command line

for windows. Git Bash provides an emulation layer for a Git command-line experience.

Bash is an abbreviation of Bourne Again Shell. Git package installer contains Bash, bash

utilities, and Git on a Windows operating system.

Bash is a standard default shell on Linux and macOS. A shell is a terminal application which

is used to create an interface with an operating system through commands.

By default, Git Windows package contains the Git Bash tool. We can access it by right-

click on a folder in Windows Explorer.

Git Bash Commands

Git Bash comes with some additional commands that are stored in the /usr/bin directory

of the Git Bash emulation. Git Bash can provide a robust shell experience on Windows. Git

Bash comes with some essential shell commands like Ssh, scp, cat, find.

Git Bash also includes the full set of Git core commands like git clone, git commit, git

checkout, git push, and more.

Git GUI

Git GUI is a powerful alternative to Git BASH. It offers a graphical version of the Git

command line function, as well as comprehensive visual diff tools. We can access it by

simply right click on a folder or location in windows explorer. Also, we can access it

through the command line by typing below command.

1. $ git gui

A pop-up window will open as Git gui tool. The Git GUI's interface looks like as:

Git facilitates with some built-in GUI tools for committing (git-gui) and browsing (gitk),

but there are many third-party tools for users looking for platform-specific experience.

Gitk

gitk is a graphical history viewer tool. It's a robust GUI shell over git log and git grep.

This tool is used to find something that happened in the past or visualize your project's

history.

Gitk can invoke from the command-line. Just change directory into a Git repository, and

type:

1. $ gitk [git log options]

This command invokes the gitk graphical interface and displays the project history. The

Gitk interface looks like this:

Gitk supports several command-line options, most of which are passed through to the

underlying git log action.

Git Third-Party Tools

Many third-party tools are available in the market to enhance the functionality of Git and

provide an improved user interface. These tools are available for distinct platforms like

Windows, Mac, Linux, Android, iOS.

A list of popular third party Git tools are as follows:

Git Terminology

Git is a tool that covered vast terminology and jargon, which can often be difficult for new

users, or those who know Git basics but want to become Git masters. So, we need a little

explanation of the terminology behind the tools. Let's have a look at the commonly used

terms.

Some commonly used terms are:

Branch

A branch is a version of the repository that diverges from the main working project. It is

an essential feature available in most modern version control systems. A Git project can

have more than one branch. We can perform many operations on Git branch-like rename,

list, delete, etc.

C++ vs Java

Checkout

In Git, the term checkout is used for the act of switching between different versions of a

target entity. The git checkout command is used to switch between branches in a

repository.

Cherry-Picking

Cherry-picking in Git is meant to apply some commit from one branch into another

branch. In case you made a mistake and committed a change into the wrong branch, but

do not want to merge the whole branch. You can revert the commit and cherry-pick it on

another branch.

Clone

The git clone is a Git command-line utility. It is used to make a copy of the target

repository or clone it. If I want a local copy of my repository from GitHub, this tool allows

creating a local copy of that repository on your local directory from the repository URL.

Fetch

It is used to fetch branches and tags from one or more other repositories, along with the

objects necessary to complete their histories. It updates the remote-tracking branches.

HEAD

HEAD is the representation of the last commit in the current checkout branch. We can

think of the head like a current branch. When you switch branches with git checkout, the

HEAD revision changes, and points the new branch.

Index

The Git index is a staging area between the working directory and repository. It is used as

the index to build up a set of changes that you want to commit together.

Master

Master is a naming convention for Git branch. It's a default branch of Git. After cloning a

project from a remote server, the resulting local repository contains only a single local

branch. This branch is called a "master" branch. It means that "master" is a repository's

"default" branch.

Merge

Merging is a process to put a forked history back together. The git merge command

facilitates you to take the data created by git branch and integrate them into a single

branch.

Origin

In Git, "origin" is a reference to the remote repository from a project was initially cloned.

More precisely, it is used instead of that original repository URL to make referencing much

easier.

Pull/Pull Request

The term Pull is used to receive data from GitHub. It fetches and merges changes on the

remote server to your working directory. The git pull command is used to make a Git

pull.

Pull requests are a process for a developer to notify team members that they have

completed a feature. Once their feature branch is ready, the developer files a pull request

via their remote server account. Pull request announces all the team members that they

need to review the code and merge it into the master branch.

Push

The push term refers to upload local repository content to a remote repository. Pushing

is an act of transfer commits from your local repository to a remote repository. Pushing is

capable of overwriting changes; caution should be taken when pushing.

Rebase

In Git, the term rebase is referred to as the process of moving or combining a sequence

of commits to a new base commit. Rebasing is very beneficial and visualized the process

in the environment of a feature branching workflow.

From a content perception, rebasing is a technique of changing the base of your branch

from one commit to another.

Remote

In Git, the term remote is concerned with the remote repository. It is a shared repository

that all team members use to exchange their changes. A remote repository is stored on a

code hosting service like an internal server, GitHub, Subversion and more.

In case of a local repository, a remote typically does not provide a file tree of the project's

current state, as an alternative it only consists of the .git versioning data.

Repository

In Git, Repository is like a data structure used by VCS to store metadata for a set of files

and directories. It contains the collection of the file as well as the history of changes made

to those files. Repositories in Git is considered as your project folder. A repository has all

the project-related data. Distinct projects have distinct repositories.

Stashing

Sometimes you want to switch the branches, but you are working on an incomplete part

of your current project. You don't want to make a commit of half-done work. Git stashing

allows you to do so. The git stash command enables you to switch branch without

committing the current branch.

Tag

Tags make a point as a specific point in Git history. It is used to mark a commit stage as

important. We can tag a commit for future reference. Primarily, it is used to mark a projects

initial point like v1.1. There are two types of tags.

1. Light-weighted tag

2. Annotated tag

Upstream And Downstream

The term upstream and downstream is a reference of the repository. Generally, upstream

is where you cloned the repository from (the origin) and downstream is any project that

integrates your work with other works. However, these terms are not restricted to Git

repositories.

Git Revert

In Git, the term revert is used to revert some commit. To revert a commit, git

revert command is used. It is an undo type command. However, it is not a traditional

undo alternative.

Git Reset

In Git, the term reset stands for undoing changes. The git reset command is used to reset

the changes. The git reset command has three core forms of invocation. These forms are

as follows.

o Soft

o Mixed

o Hard

Git Ignore

In Git, the term ignore used to specify intentionally untracked files that Git should ignore.

It doesn't affect the Files that already tracked by Git.

Git Diff

Git diff is a command-line utility. It's a multiuse Git command. When it is executed, it runs

a diff function on Git data sources. These data sources can be files, branches, commits,

and more. It is used to show changes between commits, commit, and working tree, etc.

Git Cheat Sheet

A Git cheat sheet is a summary of Git quick references. It contains basic Git commands

with quick installation. A cheat sheet or crib sheet is a brief set of notes used for quick

reference. Cheat sheets are so named because the people may use it without no prior

knowledge.

Git Flow

GitFlow is a branching model for Git, developed by Vincent Driessen. It is very well

organized to collaborate and scale the development team. Git flow is a collection of Git

commands. It accomplishes many repository operations with just single commands.

Git Squash

In Git, the term squash is used to squash previous commits into one. Git squash is an

excellent technique to group-specific changes before forwarding them to others. You can

merge several commits into a single commit with the powerful interactive rebase

command.

Git Rm

In Git, the term rm stands for remove. It is used to remove individual files or a collection

of files. The key function of git rm is to remove tracked files from the Git index.

Additionally, it can be used to remove files from both the working directory and staging

index.

Git Fork

A fork is a rough copy of a repository. Forking a repository allows you to freely test and

debug with changes without affecting the original project.

Great use of using forks to propose changes for bug fixes. To resolve an issue for a bug

that you found, you can:

o Fork the repository.

o Make the fix.

o Forward a pull request to the project owner.

12 Git Commands

There are many different ways to use Git. Git supports many command-line tools and

graphical user interfaces. The Git command line is the only place where you can run all

the Git commands.

The following set of commands will help you understand how to use Git via the command

line.

Basic Git Commands

Here is a list of most essential Git commands that are used daily.

1. Git Config command

2. Git init command

3. Git clone command

4. Git add command

5. Git commit command

6. Git status command

7. Git push Command

8. Git pull command

9. Git Branch Command

10. Git Merge Command

11. Git log command

12. Git remote command

Let's understand each command in detail.

1) Git config command

This command configures the user. The Git config command is the first and necessary

command used on the Git command line. This command sets the author name and email

address to be used with your commits. Git config is also used in other scenarios.

Syntax

1. $ git config --global user.name "ImDwivedi1"

2. $ git config --global user.email "Himanshudubey481@gmail.com"

2) Git Init command

This command is used to create a local repository.

Syntax

1. $ git init Demo

The init command will initialize an empty repository. See the below screenshot.

3) Git clone command

This command is used to make a copy of a repository from an existing URL. If I want a

local copy of my repository from GitHub, this command allows creating a local copy of

that repository on your local directory from the repository URL.

Syntax

1. $ git clone URL

4) Git add command

This command is used to add one or more files to staging (Index) area.

Syntax

To add one file

1. $ git add Filename

To add more than one file

1. $ git add*

5) Git commit command

Commit command is used in two scenarios. They are as follows.

Git commit -m

This command changes the head. It records or snapshots the file permanently in the

version history with a message.

Syntax

1. $ git commit -m " Commit Message"

Git commit -a

This command commits any files added in the repository with git add and also commits

any files you've changed since then.

Syntax

1. $ git commit -a

6) Git status command

The status command is used to display the state of the working directory and the staging

area. It allows you to see which changes have been staged, which haven't, and which files

aren?t being tracked by Git. It does not show you any information about the committed

project history. For this, you need to use the git log. It also lists the files that you've

changed and those you still need to add or commit.

Syntax

1. $ git status

7) Git push Command

It is used to upload local repository content to a remote repository. Pushing is an act of

transfer commits from your local repository to a remote repo. It's the complement to git

fetch, but whereas fetching imports commits to local branches on comparatively pushing

exports commits to remote branches. Remote branches are configured by using the git

remote command. Pushing is capable of overwriting changes, and caution should be

taken when pushing.

Git push command can be used as follows.

Git push origin master

This command sends the changes made on the master branch, to your remote repository.

Syntax

1. $ git push [variable name] master

Git push -all

This command pushes all the branches to the server repository.

Syntax

1. $ git push --all

8) Git pull command

Pull command is used to receive data from GitHub. It fetches and merges changes on the

remote server to your working directory.

Syntax

1. $ git pull URL

9) Git Branch Command

This command lists all the branches available in the repository.

Syntax

1. $ git branch

10) Git Merge Command

This command is used to merge the specified branch?s history into the current branch.

Syntax

1. $ git merge BranchName

11) Git log Command

This command is used to check the commit history.

Syntax

1. $ git log

By default, if no argument passed, Git log shows the most recent commits first. We can

limit the number of log entries displayed by passing a number as an option, such as -3 to

show only the last three entries.

1. $ git log -3

12) Git remote Command

Git Remote command is used to connect your local repository to the remote server. This

command allows you to create, view, and delete connections to other repositories. These

connections are more like bookmarks rather than direct links into other repositories. This

command doesn't provide real-time access to repositories.

Git Flow / Git Branching Model

Git flow is the set of guidelines that developers can follow when using Git. We cannot say

these guidelines as rules. These are not the rules; it is a standard for an ideal project. So

that a developer would easily understand the things.

It is referred to as Branching Model by the developers and works as a central repository

for a project. Developers work and push their work to different branches of the main

repository.

There are different types of branches in a project. According to the standard branching

strategy and release management, there can be following types of branches:

Abstract Class vs Interface | Difference between Abstract class and Interface in Java

o Master

o Develop

o Hotfixes

o Release branches

o Feature branches

Every branch has its meaning and standard. Let's understand each branch and its usage.

The Main Branches

Two of the branching model's branches are considered as main branches of the project.

These branches are as follows:

o master

o develop

Master Branch

The master branch is the main branch of the project that contains all the history of final

changes. Every developer must be used to the master branch. The master branch contains

the source code of HEAD that always reflects a final version of the project.

Your local repository has its master branch that always up to date with the master of a

remote repository.

It is suggested not to mess with the master. If you edited the master branch of a group

project, your changes would affect everyone else, and very quickly, there will be merge

conflicts.

Develop Branch

It is parallel to the master branch. It is also considered as the main branch of the project.

This branch contains the latest delivered development changes for the next release. It has

the final source code for the release. It is also called as a "integration branch."

When the develop branch reaches a stable point and is ready to release, it should be

merged with master and tagged with a release version.

Supportive Branches

The development model needs a variety of supporting branches for the parallel

development, tracking of features, assist in quick fixing and release, and other problems.

These branches have a limited lifetime and are removed after the uses.

The different types of supportive branches, we may use are as follows:

o Feature branches

o Release branches

o Hotfix branches

Each of these branches is made for a specific purpose and have some merge targets.

These branches are significant for a technical perspective.

Feature Branches

Feature branches can be considered as topic branches. It is used to develop a new feature

for the next version of the project. The existence of this branch is limited; it is deleted after

its feature has been merged with develop branch.

To learn how to create a Feature Branch Visit Here.

Release Branches

The release branch is created for the support of a new version release. Senior developers

will create a release branch. The release branch will contain the predetermined amount of

the feature branch. The release branch should be deployed to a staging server for testing.

Developers are allowed for minor bug fixing and preparing meta-data for a release on

this branch. After all these tasks, it can be merged with the develop branch.

When all the targeted features are created, then it can be merged with the develop

branch. Some usual standard of the release branch are as follows:

o Generally, senior developers will create a release branch.

o The release branch will contain the predetermined amount of the feature branch.

o The release branch should be deployed to a staging server for testing.

o Any bugs that need to be improved must be addressed at the release branch.

o The release branch must have to be merged back into developing as well as the

master branch.

o After merging, the release branch with the develop branch must be tagged with a

version number.

To create a release branch, visit Git Branching.

To tag branch after merging the release branch, Visit Git tag.

Hotfix Branches

Hotfix branches are similar to Release branches; both are created for a new production

release.

The hotfix branches arise due to immediate action on the project. In case of a critical bug

in a production version, a hotfix branch may branch off in your project. After fixing the

bug, this branch can be merged with the master branch with a tag.

Git Cheat Sheet

1. Git configuration

o Git config

Get and set configuration variables that control all facets of how Git looks and

operates.

Set the name:

$ git config --global user.name "User name"

Set the email:

$ git config --global user.email "himanshudubey481@gmail.com"

Set the default editor:

$ git config --global core.editor Vim

Check the setting:

$ git config -list

o Git alias

Set up an alias for each command:

$ git config --global alias.co checkout

$ git config --global alias.br branch

$ git config --global alias.ci commit

$ git config --global alias.st status

2. Starting a project

o Git init

Create a local repository:

$ git init

o Git clone

Make a local copy of the server repository.

$ git clone

3. Local changes

o Git add

Add a file to staging (Index) area:

$ git add Filename

Add all files of a repo to staging (Index) area:

$ git add*

o Git commit

Record or snapshots the file permanently in the version history with a message.

$ git commit -m " Commit Message"

4. Track changes

o Git diff

Track the changes that have not been staged: $ git diff

Track the changes that have staged but not committed:

$ git diff --staged

Track the changes after committing a file:

$ git diff HEAD

Track the changes between two commits:

$ git diff Git Diff Branches:

$ git diff < branch 2>

o Git status

Display the state of the working directory and the staging area.

$ git status

o Git show Shows objects:

$ git show

5. Commit History

o Git log

Display the most recent commits and the status of the head:

$ git log

Display the output as one commit per line:

$ git log -oneline

Displays the files that have been modified:

$ git log -stat

Display the modified files with location:

$ git log -p

o Git blame

Display the modification on each line of a file:

$ git blame <file name>

6. Ignoring files

o .gitignore

Specify intentionally untracked files that Git should ignore. Create .gitignore:

$ touch .gitignore List the ignored files:

$ git ls-files -i --exclude-standard

7. Branching

o Git branch Create branch:

$ git branch List Branch:

$ git branch --list Delete a Branch:

$ git branch -d Delete a remote Branch:

$ git push origin -delete Rename Branch:

$ git branch -m

o Git checkout

Switch between branches in a repository.

Switch to a particular branch:

$ git checkout

Create a new branch and switch to it:

$ git checkout -b Checkout a Remote branch:

$ git checkout

o Git stash

Switch branches without committing the current branch. Stash current work:

$ git stash

Saving stashes with a message:

$ git stash save ""

Check the stored stashes:

$ git stash list

Re-apply the changes that you just stashed:

$ git stash apply

Track the stashes and their changes:

$ git stash show

Re-apply the previous commits:

$ git stash pop

Delete a most recent stash from the queue:

$ git stash drop

Delete all the available stashes at once:

$ git stash clear

Stash work on a separate branch:

$ git stash branch

o Git cherry pic

Apply the changes introduced by some existing commit:

$ git cherry-pick

8. Merging

o Git merge

Merge the branches:

$ git merge

Merge the specified commit to currently active branch:

$ git merge

o Git rebase

Apply a sequence of commits from distinct branches into a final commit.

$ git rebase

Continue the rebasing process:

$ git rebase -continue Abort the rebasing process:

$ git rebase --skip

o Git interactive rebase

Allow various operations like edit, rewrite, reorder, and more on existing commits.

$ git rebase -i

9. Remote

o Git remote

Check the configuration of the remote server:

$ git remote -v

Add a remote for the repository:

$ git remote add Fetch the data from the remote server:

$ git fetch

Remove a remote connection from the repository:

$ git remote rm

Rename remote server:

$ git remote rename

Show additional information about a particular remote:

$ git remote show

Change remote:

$ git remote set-url

o Git origin master

Push data to the remote server:

$ git push origin master Pull data from remote server:

$ git pull origin master

10. Pushing Updates

o Git push

Transfer the commits from your local repository to a remote server. Push data to

the remote server:

$ git push origin master Force push data:

$ git push -f

Delete a remote branch by push command:

$ git push origin -delete edited

11. Pulling updates

o Git pull

Pull the data from the server:

$ git pull origin master

Pull a remote branch:

$ git pull

o Git fetch

Download branches and tags from one or more repositories. Fetch the remote

repository:

$ git fetch< repository Url> Fetch a specific branch:

$ git fetch

Fetch all the branches simultaneously:

$ git fetch -all

Synchronize the local repository:

$ git fetch origin

12. Undo changes

o Git revert

Undo the changes:

$ git revert

Revert a particular commit:

$ git revert

o Git reset

Reset the changes:

$ git reset -hard

$ git reset -soft:

$ git reset --mixed

13. Removing files

o Git rm

Remove the files from the working tree and from the index:

$ git rm <file Name>

Remove files from the Git But keep the files in your local repository:

$ git rm --cached

Git Init

The git init command is the first command that you will run on Git. The git init command

is used to create a new blank repository. It is used to make an existing project as a Git

project. Several Git commands run inside the repository, but init command can be run

outside of the repository.

The git init command creates a .git subdirectory in the current working directory. This

newly created subdirectory contains all of the necessary metadata. These metadata can

be categorized into objects, refs, and temp files. It also initializes a HEAD pointer for the

master branch of the repository.

Creating the first repository

Git version control system allows you to share projects among developers. For learning

Git, it is essential to understand that how can we create a project on Git. A repository is a

directory that contains all the project-related data. There can also be more than one

project on a single repository.

Java Array MCQ Set 1

We can create a repository for blank and existing projects. Let's understand how to create

a repository.

Create a Repository for a Blank (New) Project:

To create a blank repository, open command line on your desired directory and run the

init command as follows:

1. $ git init

The above command will create an empty .git repository. Suppose we want to make a git

repository on our desktop. To do so, open Git Bash on the desktop and run the above

command. Consider the below output:

The above command will initialize a .git repository on the desktop. Now we can create

and add files on this repository for version control.

To create a file, run the cat or touch command as follows:

1. $ touch <file Name>

To add files to the repository, run the git add command as follows:

1. $ git add <file name>

Learn more about git add command visit Git Add.

Create a Repository for an existing project

If you want to share your project on a version control system and control it with Git, then,

browse your project's directory and start the git command line (Git Bash for Windows)

here. To initialize a new repository, run the below command:

Syntax:

1. $ git init

Output:

The above command will create a new subdirectory named .git that holds all necessary

repository files. The .git subdirectory can be understood as a Git repository skeleton.

Consider the below image:

An empty repository .git is added to my existing project. If we want to start version-

controlling for existing files, we have to track these files with git add command, followed

by a commit.

We can list all the untracked files by git status command.

1. $ git status

Consider the below output:

In the above output, the list of all untracked files is displayed by the git status command.

To learn more about status command, visit Git Status.

We can track all the untracked files by Git Add command.

Create a Repository and Directory Together

The git init command allows us to create a new blank repository and a directory together.

The empty repository .git is created under the directory. Suppose I want to create a blank

repository with a project name, then we can do so by the git init command. Consider the

below command:

1. $ git init NewDirectory

The above command will create an empty .git repository under a directory

named NewDirectory. Consider the below output:

In the above output, the directory and the repository both are created.

Hence we can create a repository using git init command. Two other commands are handy

to start with git. They are Git Add, and Git commit.

Also, see various operations on the repository, see Git Repository.

Git Add

The git add command is used to add file contents to the Index (Staging Area).This

command updates the current content of the working tree to the staging area. It also

prepares the staged content for the next commit. Every time we add or update any file in

our project, it is required to forward updates to the staging area.

The git add command is a core part of Git technology. It typically adds one file at a time,

but there some options are available that can add more than one file at once.

The "index" contains a snapshot of the working tree data. This snapshot will be forwarded

for the next commit.

OOPs Concepts in Java

The git add command can be run many times before making a commit. These all add

operations can be put under one commit. The add command adds the files that are

specified on command line.

The git add command does not add the .gitignore file by default. In fact, we can ignore

the files by this command.

Let's understand how to add files on Git?

Git add files

Git add command is a straight forward command. It adds files to the staging area. We can

add single or multiple files at once in the staging area. It will be run as:

1. $ git add <File name>

The above command is added to the git staging area, but yet it cannot be shared on the

version control system. A commit operation is needed to share it. Let's understand the

below scenario.

We have created a file for our newly created repository in NewDirectory. To create a file,

use the touch command as follows:

1. $ touch newfile.txt

And check the status whether it is untracked or not by git status command as follows:

1. $ git status

The above command will display the untracked files from the repository. These files can

be added to our repository. As we know we have created a newfile.txt, so to add this file,

run the below command:

1. $ git add newfile.txt

Consider the below output:

From the above output, we can see newfile.txt has been added to our repository. Now,

we have to commit it to share on Git.

Git Add All

We can add more than one files in Git, but we have to run the add command repeatedly.

Git facilitates us with a unique option of the add command by which we can add all the

available files at once. To add all the files from the repository, run the add command with -

A option. We can use '.' Instead of -A option. This command will stage all the files at a

time. It will run as follows:

1. $ git add -A

Or

1. $ git add .

The above command will add all the files available in the repository. Consider the below

scenario:

We can either create four new files, or we can copy it, and then we add all these files at

once. Consider the below output:

In the above output, all the files are displaying as untracked files by Git. To track all of

these files at once, run the below command:

1. $ git add -A

The above command will add all the files to the staging area. Remember, the -A option is

case sensitive. Consider the below output:

In the above output, all the files have been added. The status of all files is displaying as

staged.

Removing Files from the Staging Area

The git add command is also used to remove files from the staging area. If we delete a

file from the repository, then it is available to our repository as an untracked file. The add

command is used to remove it from the staging area. It sounds strange, but Git can do it.

Consider the below scenario:

We have deleted the newfile3.txt from the repository. The status of the repository after

deleting the file is as follows:

Git Commit

It is used to record the changes in the repository. It is the next command after the git add.

Every commit contains the index data and the commit message. Every commit forms a

parent-child relationship. When we add a file in Git, it will take place in the staging area.

A commit command is used to fetch updates from the staging area to the repository.

The staging and committing are co-related to each other. Staging allows us to continue

in making changes to the repository, and when we want to share these changes to the

version control system, committing allows us to record these changes.

Commits are the snapshots of the project. Every commit is recorded in the master branch

of the repository. We can recall the commits or revert it to the older version. Two different

commits will never overwrite because each commit has its own commit-id. This commit-

id is a cryptographic number created by SHA (Secure Hash Algorithm) algorithm.

Hello Java Program for Beginners

Let's see the different kinds of commits.

The git commit command

The commit command will commit the changes and generate a commit-id. The commit

command without any argument will open the default text editor and ask for the commit

message. We can specify our commit message in this text editor. It will run as follows:

1. $ git commit

The above command will prompt a default editor and ask for a commit message. We have

made a change to newfile1.txt and want it to commit it. It can be done as follows:

Consider the below output:

As we run the command, it will prompt a default text editor and ask for a commit message.

The text editor will look like as follows:

Press the Esc key and after that 'I' for insert mode. Type a commit message whatever you

want. Press Esc after that ':wq' to save and exit from the editor. Hence, we have

successfully made a commit.

We can check the commit by git log command. Consider the below output:

We can see in the above output that log option is displaying commit-id, author detail,

date and time, and the commit message.

To know more about the log option, visit Git Log.

Git commit -a

The commit command also provides -a option to specify some commits. It is used to

commit the snapshots of all changes. This option only consider already added files in Git.

It will not commit the newly created files. Consider below scenario:

We have made some updates to our already staged file newfile3 and create a file

newfile4.txt. Check the status of the repository and run the commit command as follows:

1. $ git commit -a

Consider the output:

The above command will prompt our default text editor and ask for the commit message.

Type a commit message, and then save and exit from the editor. This process will only

commit the already added files. It will not commit the files that have not been staged.

Consider the below output:

As we can see in the above output, the newfile4.txt has not been committed.

Git commit -m

The -m option of commit command lets you to write the commit message on the

command line. This command will not prompt the text editor. It will run as follows:

1. $ git commit -m "Commit message."

The above command will make a commit with the given commit message. Consider the

below output:

In the above output, a newfile4.txt is committed to our repository with a commit

message.

We can also use the -am option for already staged files. This command will immediately

make a commit for already staged files with a commit message. It will run as follows:

1. $ git commit -am "Commit message."

Git Commit Amend (Change commit message)

The amend option lets us to edit the last commit. If accidentally, we have committed a

wrong commit message, then this feature is a savage option for us. It will run as follows:

1. $ git commit -amend

The above command will prompt the default text editor and allow us to edit the commit

message.

We may need some other essential operations related to commit like revert commit, undo

a commit, and more, but these operations are not a part of the commit command. We

can do it with other commands. Some essential operations are as follows:

o Git undo commit: Visit Git Reset

o Git revert commit: Visit Git Revert

o git remove commit: Visit Git Rm

As we can see from the above output, the deleted file is still available in the staging area.

To remove it from the index, run the below command as follows:

1. $ git add newfile3.txt

Consider the below output:

From the above output, we can see that the file is removed from the staging area.

Add all New and Updated Files Only:

Git allows us to stage only updated and newly created files at once. We will use the ignore

removal option to do so. It will be used as follows:

1. $ git add --ignore-removal .

Add all Modified and Deleted Files

Git add facilitates us with a variety of options. There is another option that is available in

Git, which allows us to stage only the modified and deleted files. It will not stage the newly

created file. To stage all modified and deleted files only, run the below command:

1. $ git add -u

Add Files by Wildcard

Git allows us to add all the same pattern files at once. It is another way to add multiple

files together. Suppose I want to add all java files or text files, then we can use pattern

.java or .txt. To do so, we will run the command as follows:

1. $ git add *.java

The above command will stage all the Java files. The same pattern will be applied for the

text files.

The next step after adding files is committing to share it on Git.

Git Undo Add

We can undo a git add operation. However, it is not a part of git add command, but we

can do it through git reset command.

To undo an add operation, run the below command:

1. $ git reset <filename>

Git Clone

In Git, cloning is the act of making a copy of any target repository. The target repository

can be remote or local. You can clone your repository from the remote repository to create

a local copy on your system. Also, you can sync between the two locations.

Git Clone Command

The git clone is a command-line utility which is used to make a local copy of a remote

repository. It accesses the repository through a remote URL.

Usually, the original repository is located on a remote server, often from a Git service like

GitHub, Bitbucket, or GitLab. The remote repository URL is referred to the origin.

Java Collection MCQ Set 1

Syntax:

1. $ git clone <repository URL>

Git Clone Repository

Suppose, you want to clone a repository from GitHub, or have an existing repository

owned by any other user you would like to contribute. Steps to clone a repository are as

follows:

Step 1:

Open GitHub and navigate to the main page of the repository.

Step 2:

Under the repository name, click on Clone or download.

Step 3:

Select the Clone with HTTPs section and copy the clone URL for the repository. For the

empty repository, you can copy the repository page URL from your browser and skip to

next step.

Step 4:

Open Git Bash and change the current working directory to your desired location where

you want to create the local copy of the repository.

Step 5:

Use the git clone command with repository URL to make a copy of the remote repository.

See the below command:

1. $ git clone https://github.com/ImDwivedi1/Git-Example.git

Now, Press Enter. Hence, your local cloned repository will be created. See the below

output:

Cloning a Repository into a Specific Local Folder

Git allows cloning the repository into a specific directory without switching to that

particular directory. You can specify that directory as the next command-line argument in

git clone command. See the below command:

1. $ git clone https://github.com/ImDwivedi1/Git-Example.git "new folder(2)"

The given command does the same thing as the previous one, but the target directory is

switched to the specified directory.

Git has another transfer protocol called SSH protocol. The above example uses the git://

protocol, but you can also use http(s):// or user@server:/path.git, which uses the SSH

transfer protocol.

Git Clone Branch

Git allows making a copy of only a particular branch from a repository. You can make a

directory for the individual branch by using the git clone command. To make a clone

branch, you need to specify the branch name with -b command. Below is the syntax of

the command to clone the specific git branch:

Syntax:

1. $ git clone -b <Branch name><Repository URL>

See the below command:

1. $ git clone -b master https://github.com/ImDwivedi1/Git-

Example.git "new folder(2)"

In the given output, only the master branch is cloned from the principal repository Git-

Example

Git Stash

Sometimes you want to switch the branches, but you are working on an incomplete part

of your current project. You don't want to make a commit of half-done work. Git stashing

allows you to do so. The git stash command enables you to switch branches without

committing the current branch.

The below figure demonstrates the properties and role of stashing concerning repository

and working directory.

Generally, the stash's meaning is "store something safely in a hidden place." The sense

in Git is also the same for stash; Git temporarily saves your data safely without committing.

1.2M
142
History of Java

Stashing takes the messy state of your working directory, and temporarily save it for

further use. Many options are available with git stash. Some useful options are given

below:

o Git stash

o Git stash save

o Git stash list

o Git stash apply

o Git stash changes

o Git stash pop

o Git stash drop

o Git stash clear

o Git stash branch

Stashing Work

Let's understand it with a real-time scenario. I have made changes to my project

GitExample2 in two files from two distinct branches. I am in a messy state, and I have not

entirely edited any file yet. So I want to save it temporarily for future use. We can stash it

to save as its current status. To stash, let's have a look at the repository's current status.

To check the current status of the repository, run the git status command. The git status

command is used as:

Syntax:

1. $ git status

Output:

From the above output, you can see the status that there are two untracked

file design.css and newfile.txt available in the repository. To save it temporarily, we can

use the git stash command. The git stash command is used as:

Syntax:

1. $ git stash

Output:

In the given output, the work is saved with git stash command. We can check the status

of the repository.

As you can see, my work is just stashed in its current position. Now, the directory is

cleaned. At this point, you can switch between branches and work on them.

Git Stash Save (Saving Stashes with the message):

In Git, the changes can be stashed with a message. To stash a change with a message, run

the below command:

Syntax:

1. $ git stash save "<Stashing Message>"

Output:

The above stash will be saved with a message

Git Stash List (Check the Stored Stashes)

To check the stored stashes, run the below command:

Syntax:

1. $ git stash list

Output:

In the above case, I have made one stash, which is displayed as "stash@{0}: WIP on the

test: 0a1a475 CSS file".

If we have more than one stash, then It will display all the stashes respectively with

different stash id. Consider the below output:

It will show all the stashes with indexing as stash@{0}: stash@{1}: and so on.

Git Stash Apply

You can re-apply the changes that you just stashed by using the git stash command. To

apply the commit, use the git stash command, followed by the apply option. It is used as:

Syntax:

1. $ git stash apply

Output:

The above output restores the last stash. Now, if you will check the status of the repository,

it will show the changes that are made on the file. Consider the below output:

From the above output, you can see that the repository is restored to its previous state

before stash. It is showing output as "Changes not staged for commit."

In case of more than one stash, you can use "git stash apply" command followed by stash

index id to apply the particular commit. It is used as:

Syntax:

1. $ git stash apply <stash id>

Consider the below output:

Output:

If we don't specify a stash, Git takes the most recent stash and tries to apply it.

Git Stash Changes

We can track the stashes and their changes. To see the changes in the file before stash

and after stash operation, run the below command:

Syntax:

1. $ git stash show

The above command will show the file that is stashed and changes made on them.

Consider the below output:

Output:

The above output illustrates that there are two files that are stashed, and two insertions

performed on them.

We can exactly track what changes are made on the file. To display the changed content

of the file, perform the below command:

Syntax:

1. $ git stash show -p

Here, -p stands for the partial stash. The given command will show the edited files and

content, consider the below output:

Output:

The above output is showing the file name with changed content. It acts the same as git

diff command. The git diff command will also show the exact output.

Git Stash Pop (Reapplying Stashed Changes)

Git allows the user to re-apply the previous commits by using git stash pop command.

The popping option removes the changes from stash and applies them to your working

file.

The git stash pop command is quite similar to git stash apply. The main difference

between both of these commands is stash pop command that deletes the stash from the

stack after it is applied.

Syntax:

1. $ git stash pop

The above command will re-apply the previous commits to the repository. Consider the

below output.

Output:

Git Stash Drop (Unstash)

The git stash drop command is used to delete a stash from the queue. Generally, it

deletes the most recent stash. Caution should be taken before using stash drop command,

as it is difficult to undo if once applied.

The only way to revert it is if you do not close the terminal after deleting the stash. The

stash drop command will be used as:

Syntax:

1. $ git stash drop

Output:

In the above output, the most recent stash (stash@{0}) has been dropped from given

three stashes. The stash list command lists all the available stashes in the queue.

We can also delete a particular stash from the queue. To delete a particular stash from

the available stashes, pass the stash id in stash drop command. It will be processed as:

Syntax:

1. $ git stash drop <stash id>

Assume that I have two stashes available in my queue, and I don't want to drop my most

recent stash, but I want to delete the older one. Then, it will be operated as:

1. $ git stash drop stash@{1}

Consider the below output:

In the above output, the commit stash@{1} has been deleted from the queue.

Git Stash Clear

The git stash clear command allows deleting all the available stashes at once. To delete

all the available stashes, operate below command:

Syntax:

1. $ git stash clear

it will delete all the stashes that exist in the repository.

Output:

All the stashes are deleted in the above output. The git stash list command is blank

because there are no stashes available in the repository.

Git Stash Branch

If you stashed some work on a particular branch and continue working on that branch.

Then, it may create a conflict during merging. So, it is good to stash work on a separate

branch.

The git stash branch command allows the user to stash work on a separate branch to

avoid conflicts. The syntax for this branch is as follows:

Syntax:

1. $ git stash branch <Branch Name>

The above command will create a new branch and transfer the stashed work on that.

Consider the below output:

Output:

In the above output, the stashed work is transferred to a newly created branch testing. It

will avoid the merge conflict on the master branch.

Git Ignore

In Git, the term "ignore" is used to specify intentionally untracked files that Git should

ignore. It doesn't affect the Files that already tracked by Git.

Sometimes you don't want to send the files to Git service like GitHub. We can specify files

in Git to ignore.

The file system of Git is classified into three categories:

Method Overloading vs Overriding in Java

Tracked:

Tracked files are such files that are previously staged or committed.

Untracked:

Untracked files are such files that are not previously staged or committed.

Ignored:

Ignored files are such files that are explicitly ignored by git. We have to tell git to ignore

such files.

Generally, the Ignored files are artifacts and machine-generated files. These files can be

derived from your repository source or should otherwise not be committed. Some

commonly ignored files are as follows:

o dependency caches

o compiled code

o build output directories, like /bin, /out, or /target

o runtime file generated, like .log, .lock, or .tmp

o Hidden system files, like Thumbs.db or.DS_Store

o Personal IDE config files, such as .idea/workspace.xml

Git Ignore Files

Git ignore files is a file that can be any file or a folder that contains all the files that we

want to ignore. The developers ignore files that are not necessary to execute the project.

Git itself creates many system-generated ignored files. Usually, these files are hidden files.

There are several ways to specify the ignore files. The ignored files can be tracked on

a .gitignore file that is placed on the root folder of the repository. No explicit command

is used to ignore the file.

There is no explicit git ignore command; instead, the .gitignore file must be edited and

committed by hand when you have new files that you wish to ignore. The .gitignore files

hold patterns that are matched against file names in your repository to determine whether

or not they should be ignored.

How to Ignore Files Manually

There is no command in Git to ignore files; alternatively, there are several ways to specify

the ignore files in git. One of the most common ways is the .gitignore file. Let's

understand it with an example.

The .gitignore file:

Rules for ignoring file is defined in the .gitignore file. The .gitignore file is a file that

contains all the formats and files of the ignored file. We can create multiple ignore files in

a different directory. Let's understand how it works with an example:

Step1: Create a file named .gitignore if you do not have it already in your directory. To

create a file, use the command touch or cat. It will use as follows:

1. $ touch .gitignore

Or

1. $ cat .gitignore

The above command will create a .gitignore file on your directory. Remember, you are

working on your desired directory. Consider the below command:

The above command will create a file named .gitignored. We can track it on the repository.

Consider the below image:

As you can see from the above image, a .gitignore file has been created for my repository.

Step2: Now, add the files and directories to the .gitignore file that you want to ignore.

To add the files and directory to the .git ignore the file, open the file and type the file

name, directory name, and pattern to ignore files and directories. Consider the below

image:

In the above file, I have given one format and a directory to ignore. The above

format *.txt will ignore all the text files from the repository, and /newfolder/* will ignore

the newfolder and its sub-content. We can also give only the name of any file to ignore.

Step3: Now, to share it on Git, we have to commit it. The .gitignore file is still now in

staging area; we can track it by git status command. Consider the below output:

Now to stage it, we have to commit it. To commit it, run the below command:

1. $ git add .gitignore

2. $ git commit -m "ignored directory created."

The above command will share the file .gitignore on Git. Consider the below output.

Now, we have ignored a pattern file and a directory in Git.

Rules for putting the pattern in .gitignore file:

The rules for the patterns that can be put in the .gitignore file are as follows:

o Git ignores the Blank lines or lines starting with #.

o Only the Standard glob patterns work and will be applied recursively throughout

the entire working tree.

o The patterns can be started with a forward slash (/) to avoid recursively.

o The patterns can be ended with a forward slash (/) to specify a directory.

o The patterns can be negated by starting it with an exclamation point (!).

Global .gitignore:.

As we know that we can create multiple .gitignore files for a project. But Git also allows

us to create a universal .gitignore file that can be used for the whole project. This file is

known as a global .gitignore file. To create a global .gitignore, run the below command

on terminal:

1. $ git config --global core.excludesfile ~/.gitignore_global

The above command will create a global .gitignore file for the repository.

How to List the Ignored Files?

In Git, We can list the ignored files. There are various commands to list the ignored files,

but the most common way to list the file is the ls command. To list the ignored file, run

the ls command as follows:

1. $ git ls-files -i --exclude-standard

Or

1. $ git ls-files --ignore --exclude-standard

The above command will list all available ignored files from the repository. In the given

command, -I option stands for ignore and --exclude-standard is specifying the exclude

pattern. Consider the below output:

From the above output, we can see that the ls command is listing the available ignored

files from the repository.

Git Fork

A fork is a rough copy of a repository. Forking a repository allows you to freely test and

debug with changes without affecting the original project. One of the excessive use of

forking is to propose changes for bug fixing. To resolve an issue for a bug that you found,

you can:

o Fork the repository.

o Make the fix.

o Forward a pull request to the project owner.

Forking is not a Git function; it is a feature of Git service like GitHub.

When to Use Git Fork

Generally, forking a repository allows us to experiment on the project without affecting

the original project. Following are the reasons for forking the repository:

o Propose changes to someone else's project.

o Use an existing project as a starting point.

Let's understand how to fork a repository on GitHub?

How to Fork a Repository?

The forking and branching are excellent ways to contribute to an open-source project.

These two features of Git allows the enhanced collaboration on the projects.

Forking is a safe way to contribute. It allows us to make a rough copy of the project. We

can freely experiment on the project. After the final version of the project, we can create

a pull request for merging.

It is a straight-forward process. Steps for forking the repository are as follows:

o Login to the GitHub account.

o Find the GitHub repository which you want to fork.

o Click the Fork button on the upper right side of the repository's page.

We can't fork our own repository. Only shared repositories can be fork. If someone wants

to fork the repository, then he must log in with his account. Let's understand the below

scenario in which a user pune2016 wants to contribute to our project GitExample2. When

he searches or put the address of our repository, our repository will look like as follows:

The above image shows the user interface of my repository from other contributors. We

can see the fork option at the top right corner of the repository page. By clicking on that,

the forking process will start. It will take a while to make a copy of the project for other

users. After the forking completed, a copy of the repository will be copied to your GitHub

account. It will not affect the original repository. We can freely make changes and then

create a pull request for the main project. The owner of the project will see your

suggestion and decide whether he wants to merge the changes or not. The fork copy will

look like as follows:

As you can see, the forked repository looks like pune2016/GitExample2. At the bottom

of the repository name, we can see a description of the repository. At the top right corner,

the option fork is increased by 1 number.

Hence one can fork the repository from GitHub.

Fork vs. Clone

Sometimes people considered the fork as clone command because of their property. Both

commands are used to create another copy of the repository. But the significant

difference is that the fork is used to create a server-side copy, and clone is used to create

a local copy of the repository.

There is no particular command for forking the repository; instead, it is a service provided

by third-party Git service like GitHub. Comparatively, git clone is a command-line utility

that is used to create a local copy of the project.

Generally, people working on the same project clone the repository and the external

contributors fork the repository.

A pull request can merge the changes made on the fork repository. We can create a pull

request to propose changes to the project. Comparatively, changes made on the cloned

repository can be merged by pushing. We can push the changes to our remote repository.

Git Repository

In Git, the repository is like a data structure used by VCS to store metadata for a set of

files and directories. It contains the collection of the files as well as the history of changes

made to those files. Repository in Git is considered as your project folder. A repository

has all the project-related data. Distinct projects have distinct repositories.

Getting a Git Repository

There are two ways to obtain a repository. They are as follows:

o Create a local repository and make it as Git repository.

o Clone a remote repository (already exists on a server).

In either case, you can start working on a Git repository.

Features of Java - Javatpoint

Initializing a Repository

If you want to share your project on a version control system and control it with Git. Then,

browse your project's directory and start the git command line (Git Bash for Windows)

here. To initialize a new repository, run the below command:

Syntax:

1. $ git init

Output:

The above command will create a new subdirectory named .git that holds all necessary

repository files. The .git subdirectory can be understood as a Git repository skeleton.

Consider the below image:

An empty repository .git is added to my existing project. If we want to start version-

controlling for existing files, we should track these files with git add command, followed

by a commit.

We can list all the untracked files by git status command.

1. $ git status

Consider the below output:

In the above output, the list of all untracked files is displayed by the git status command.

To share these files on the version control system, we have to track it with git add

command followed by a commit. To track the files, operate git add command as follows:

Syntax:

1. $ git add <filename>

To commit a file, perform the git commit command as follows:

1. $ git commit -m "Commit message."

Output:

In the above output, I have added three of my existing files by git add command and

commit it for sharing.

We can also create new files. To share the new file, follow the same procedure as described

above; add and commit it for sharing. Now, you have a repository to share.

Cloning an Existing Repository

We can clone an existing repository. Suppose we have a repository on a version control

system like subversion, GitHub, or any other remote server, and we want to share it with

someone to contribute. The git clone command will make a copy for any user to

contribute.

We can get nearly all data from server with git clone command. It can be done as:

Syntax:

1. $ git clone <Repository URL>

Suppose one of my friends has a repository on my GitHub account, and I want to

contribute to it. So the first thing I will do, make a copy of this project to my local system

for a better work interface. The essential element needed for cloning the repository URL.

I have a repository URL "https://github.com/ImDwivedi1/Git-Example". To clone this

repository, operate the clone command as:

1. $ git clone https://github.com/ImDwivedi1/Git-Example

Consider the below output:

In the above output, the repository Git-Example has been cloned. Now this repository is

available on your local storage. You can commit it and contribute to the project by

pushing it on a remote server.

A single repository can be cloned any number of times. So we can clone a repository on

various locations and various systems.

Git Index

The Git index is a staging area between the working directory and repository. It is used to

build up a set of changes that you want to commit together. To better understand the Git

index, then first understand the working directory and repository.

There are three places in Git where file changes can reside, and these are working

directory, staging area, and the repository. To better understand the Git index first, let's

take a quick view of these places.

Working directory:

When you worked on your project and made some changes, you are dealing with your

project's working directory. This project directory is available on your computer's

filesystem. All the changes you make will remain in the working directory until you add

them to the staging area.

Difference between JDK, JRE, and JVM

Staging area:

The staging area can be described as a preview of your next commit. When you create a

git commit, Git takes changes that are in the staging area and make them as a new

commit. You are allowed to add and remove changes from the staging area. The staging

area can be considered as a real area where git stores the changes.

Although, Git doesn't have a dedicated staging directory where it can store some objects

representing file changes (blobs). Instead of this, it uses a file called index.

Repository:

In Git, Repository is like a data structure used by GIt to store metadata for a set of files

and directories. It contains the collection of the files as well as the history of changes

made to those files. Repositories in Git is considered as your project folder. A repository

has all the project-related data. Distinct projects have distinct repositories.

You can check what is in the index by the git status command. The git status command

allows you to see which files are staged, modified but not yet staged, and completely

untracked. Staged files mean, it is currently in the index. See the below example.

Syntax:

1. $ git status

Output:

In the given output, the status command shows the index.

As we mentioned earlier index is a file, not a directory, So Git is not storing objects into it.

Instead, it stores information about each file in our repository. This information could be:

o mtime: It is the time of the last update.

o file: It is the name of the file.

o Wdir: The version of the file in the working directory.

o Stage: The version of the file in the index.

o Repo: The version of the file in the repository.

And finally, Git creates your working directory to match the content of the commit that

HEAD is pointing.

Git Origin Master

The term "git origin master" is used in the context of a remote repository. It is used to

deal with the remote repository. The term origin comes from where repository original

situated and master stands for the main branch. Let's understand both of these terms in

detail.

Git Master

Master is a naming convention for Git branch. It's a default branch of Git. After cloning a

project from a remote server, the resulting local repository contains only a single local

branch. This branch is called a "master" branch. It means that "master" is a repository's

"default" branch.

In most cases, the master is referred to as the main branch. Master branch is considered

as the final view of the repo. Your local repository has its master branch that always up to

date with the master of a remote repository.

Exception Handling in Java - Javatpoint

Do not mess with the master. If you edited the master branch of a group project, your

changes will affect everyone else and very quickly there will be merge conflicts.

Git Origin

In Git, The term origin is referred to the remote repository where you want to publish your

commits. The default remote repository is called origin, although you can work with

several remotes having a different name at the same time. It is said as an alias of the

system.

The origin is a short name for the remote repository that a project was initially being

cloned. It is used in place of the original repository URL. Thus, it makes referencing much

easier.

Origin is just a standard convention. Although it is significant to leave this convention

untouched, you could ideally rename it without losing any functionality.

In the following example, the URL parameter acts as an origin to the "clone" command

for the cloned local repository:

1. $ git clone https://github.com/ImDwivedi1/Git-Example

Some commands in which the term origin and master are widely used are as follows:

o Git push origin master

o Git pull origin master

Git has two types of branches called local and remote. To use git pull and git push, you

have to tell your local branch that on which branch is going to operate. So, the term origin

master is used to deal with a remote repository and master branch. The term push origin

master is used to push the changes to the remote repository. The term pull origin

master is used to access the repository from remote to local.

Git Remote

In Git, the term remote is concerned with the remote repository. It is a shared repository

that all team members use to exchange their changes. A remote repository is stored on a

code hosting service like an internal server, GitHub, Subversion, and more. In the case of

a local repository, a remote typically does not provide a file tree of the project's current

state; as an alternative, it only consists of the .git versioning data.

The developers can perform many operations with the remote server. These operations

can be a clone, fetch, push, pull, and more. Consider the below image:

Check your Remote

To check the configuration of the remote server, run the git remote command. The git

remote command allows accessing the connection between remote and local. If you want

to see the original existence of your cloned repository, use the git remote command. It

can be used as:

Abstract class in Java | Abstraction in Java

Syntax:

1. $ git remote

Output:

The given command is providing the remote name as the origin. Origin is the default

name for the remote server, which is given by Git.

Git remote -v:

Git remote supports a specific option -v to show the URLs that Git has stored as a short

name. These short names are used during the reading and write operation. Here, -v stands

for verbose. We can use --verbose in place of -v. It is used as:

Syntax:

1. $ git remote -v

Or

1. $ git remote --verbose

Output:

The above output is providing available remote connections. If a repository contains more

than one remote connection, this command will list them all.

Git Remote Add

When we fetch a repository implicitly, git adds a remote for the repository. Also, we can

explicitly add a remote for a repository. We can add a remote as a shot nickname or short

name. To add remote as a short name, follow the below command:

Syntax:

1. $ git remote add <short name><remote URL>

Output:

In the above output, I have added a remote repository with an existing repository as a

short name "hd". Now, you can use "hd" on the command line in place of the whole URL.

For example, you want to pull the repository, consider below output:

I have pulled a repository using its short name instead of its remote URL. Now, the

repository master branch can be accessed through a short name.

Fetching and Pulling Remote Branch

You can fetch and pull data from the remote repository. The fetch and pull command

goes out to that remote server, and fetch all the data from that remote project that you

don't have yet. These commands let us fetch the references to all the branches from that

remote.

To fetch the data from your remote projects, run the below command:

1. $ git fetch <remote>

To clone the remote repository from your remote projects, run the below command:

1. $ git clone<remote>

When we clone a repository, the remote repository is added by a default name "origin."

So, mostly, the command is used as git fetch origin.

The git fetch origin fetches the updates that have been made to the remote server since

you cloned it. The git fetch command only downloads the data to the local repository; it

doesn't merge or modify the data until you don't operate. You have to merge it manually

into your repository when you want.

To pull the repository, run the below command:

1. $ git pull <remote>

The git pull command automatically fetches and then merges the remote data into your

current branch. Pulling is an easier and comfortable workflow than fetching. Because the

git clone command sets up your local master branch to track the remote master branch

on the server you cloned.

Pushing to Remote Branch

If you want to share your project, you have to push it upstream. The git push command

is used to share a project or send updates to the remote server. It is used as:

1. $ git push <remote><branch>

To update the main branch of the project, use the below command:

1. $ git push origin master

It is a special command-line utility that specifies the remote branch and directory. When

you have multiple branches on a remote server, then this command assists you to specify

your main branch and repository.

Generally, the term origin stands for the remote repository, and master is considered as

the main branch. So, the entire statement "git push origin master" pushed the local

content on the master branch of the remote location.

Git Remove Remote

You can remove a remote connection from a repository. To remove a connection, perform

the git remote command with remove or rm option. It can be done as:

Syntax:

1. $ git remote rm <destination>

Or

1. $ git remote remove <destination>

Consider the below example:

Suppose you are connected with a default remote server "origin." To check the remote

verbosely, perform the below command:

1. $ git remote -v

Output:

The above output will list the available remote server. Now, perform the remove operation

as mentioned above. Consider the below output:

In the above output, I have removed remote server "origin" from my repository.

Git Remote Rename

Git allows renaming the remote server name so that you can use a short name in place of

the remote server name. Below command is used to rename the remote server:

Syntax:

1. $ git remote rename <old name><new name>

Output:

In the above output, I have renamed my default server name origin to hd. Now, I can

operate using this name in place of origin. Consider the below output:

In the above output, I have pulled the remote repository using the server name hd. But,

when I am using the old server name, it is throwing an error with the message "'origin'

does not appear to be a git repository." It means Git is not identifying the old name, so

all the operations will be performed by a new name.

Git Show Remote

To see additional information about a particular remote, use the git remote command

along with show sub-command. It is used as:

Syntax:

1. $ git remote show <remote>

It will result in information about the remote server. It contains a list of branches related

to the remote and also the endpoints attached for fetching and pushing.

Output:

The above output is listing the URLs for the remote repository as well as the tracking

branch information. This information will be helpful in various cases.

Git Change Remote (Changing a Remote's URL)

We can change the URL of a remote repository. The git remote set command is used to

change the URL of the repository. It changes an existing remote repository URL.

Git Remote Set:

We can change the remote URL simply by using the git remote set command. Suppose

we want to make a unique name for our project to specify it. Git allows us to do so. It is a

simple process. To change the remote URL, use the below command:

1. $ git remote set-url <remote name><newURL>

The remote set-url command takes two types of arguments. The first one is <remote

name >, it is your current server name for the repository. The second argument is

<newURL>, it is your new URL name for the repository. The <new URL> should be in

below format: https://github.com/URLChanged

Consider the below image:

In the above output, I have changed my existing repository URL

as https://github.com/URLChanged from https://github.com/ImDwivedi1/GitExam

ple2. It can be understood by my URL name that I have changed this. To check the latest

URL, perform the below command:

1. $ git remote -v

Git Tags

Tags make a point as a specific point in Git history. Tags are used to mark a commit stage

as relevant. We can tag a commit for future reference. Primarily, it is used to mark a

project's initial point like v1.1.

Tags are much like branches, and they do not change once initiated. We can have any

number of tags on a branch or different branches. The below figure demonstrates the

tags on various branches.

In the above image, there are many versions of a branch. All these versions are tags in the

repository.

Package in Java

There are two types of tags.

o Annotated tag

o Light-weighted tag

Both of these tags are similar, but they are different in case of the amount of Metadata

stores.

When to create a Tag:

o When you want to create a release point for a stable version of your code.

o When you want to create a historical point that you can refer to reuse in the future.

Git Create tag

To create a tag first, checkout to the branch where you want to create a tag. To check out

the branch, run the below command:

1. $ git checkout <Branch name>

Now, you are on your desired branch, say, master. Consider the below output:

You can create a tag by using the git tag command. Create a tag with some name say v1.0,

v1.1, or any other name whatever you want. To create a tag, run the command as follows:

Syntax:

1. $ git tag <tag name>

The above command will mark the current status of the project. Consider the below

example:

1. $ git tag projectv1.0

The above command will create a mark point on the master branch as projectv1.0.

Git List Tag

We can list the available tags in our repository. There are three options that are available

to list the tags in the repository. They are as follows:

o git tag

o git show

o git tag -l ".*"

The "git tag":

It is the most generally used option to list all the available tags from the repository. It is

used as:

1. $ git tag

Output:

As we can see from the above output, the git tag command is listing the available tags

from the repository.

The git tag show <tagname>:

It's a specific command used to display the details of a particular tag. It is used as:

Syntax:

1. $ git tag show <tagname>

The above command will display the tag description, consider the below command:

1. $ git tag show projectv1.0

Output:

In the above output, the git show tag is displaying the description of tag projectv1.0,

such as author name and date.

The git tag -l ".*":

It is also a specific command-line tool. It displays the available tags using wild card

pattern. Suppose we have ten tags as v1.0, v1.1, v1.2 up to v1.10. Then, we can list all v

pattern using tag pattern v. it is used as:

Syntax:

1. $ git tag -l "<pattern>.*"

The above command will display all the tags that contain wild card characters. Consider

the below command:

1. $ git tag -l "pro*"

Output:

The above command is displaying a list of the tags that started with a word pro.

Types of Git tags

There are two types of tags in git. They are as:

o Annotated tag

o Light-weighted tag

Let's understand both of these tags in detail.

Annotated Tags

Annotated tags are tags that store extra Metadata like developer name, email, date, and

more. They are stored as a bundle of objects in the Git database.

If you are pointing and saving a final version of any project, then it is recommended to

create an annotated tag. But if you want to make a temporary mark point or don't want

to share information, then you can create a light-weight tag. The data provided in

annotated tags are essential for a public release of the project. There are more options

available to annotate, like you can add a message for annotation of the project.

To create an annotated tag, run the below command:

Syntax:

1. $ git tag <tag name> -m "< Tag message>

The above command will create a tag with a message. Annotated tags contain some

additional information like author name and other project related information. Consider

the below image:

The above command will create an annotated tag projectv1.1 in the master branch of my

project's repository.

When we display an annotated tag, it will show more information about tag. Consider the

below output:

Light-Weighted Tag:

Git supports one more type of tag; it is called as Light-weighted tag. The motive of both

tags is the same as marking a point in the repository. Usually, it is a commit stored in a

file. It does not store unnecessary information to keep it light-weight. No command-line

option such as -a,-s or -m are supplied in light-weighted tag, pass a tag name.

Syntax:

1. $ git tag <tag name>

The above command will create a light-weight tag. Consider the below example:

1. $ git tag projectv1.0

The given output will create a light-weight tag named projectv1.0.

It will display a reduced output than an annotated tag. Consider the below output:

Git Push Tag

We can push tags to a remote server project. It will help other team members to know

where to pick an update. It will show as release point on a remote server account. The

git push command facilitates with some specific options to push tags. They are as follows:

o Git push origin <tagname>

o Git push origin -tags/ Git push --tags

The git push origin :

We can push any particular tag by using the git push command. It is used as follows:

Syntax:

1. $ git push origin <tagname>

The above command will push the specified tag name as a release point. Consider the

below example:

I have created some tags in my local repository, and I want to push it on my GitHub

account. Then, I have to operate the above command. Consider the below image; it is my

remote repository current status.

The above image is showing the release point as 0 releases. Now, perform the above

command. Consider the below output:

I have pushed my projectv1.0 tag to the remote repository. It will change the repository's

current status. Consider the below image:

By refreshing the repository, it is showing release point as 1 release. We can see this

release by clicking on it. It will show as:

We can download it as a zip and tar file.

The git push origin --tag/ git push --tags:

The given command will push all the available tags at once. It will create as much release

point as the number of tags available in the repository. It is used as follows:

Syntax:

1. $ git push origin --tags

Or

1. $ git push --tags

The above command will push all the available tags from the local repository to the

remote repository. Consider the below output:

Output:

Tags have been pushed to remote server origin; thus, the release point is also updated.

Consider the below snapshot of the repository:

The release point is updated in the above output according to tags. You can see that

releases updated as 2 releases.

Git Delete Tag

Git allows deleting a tag from the repository at any moment. To delete a tag, run the

below command:

Syntax:

1. $git tag --d <tagname>

Or

1. $ git tag --delete <tagname>

The above command will delete a particular tag from the local repository. Suppose I want

to delete my tag projectv1.0 then the process will be as:

1. $ git tag --d projectv1.0

Consider below output:

The tag projectv1.0 has been deleted from the repository.

Delete a Remote Tag:

We can also delete a tag from the remote server. To delete a tag from the remote server,

run the below command:

Syntax:

1. $ git push origin -d <tagname>

Or

1. $ git push origin --delete<tag name>

The above command will delete the specified tag from the remote server. Consider the

below output:

The projectv1.0 tag has been deleted from the remote server origin.

Delete Multiple Tags:

We can delete more than one tag just from a single command. To delete more than one

tag simultaneously, run the below command:

Syntax:

1. $ git tag -d <tag1> <tag2>

Output:

The above command will delete both the tags from the local repository.

We can also delete multiple tags from the remote server. To delete tags from the server

origin, run the below command:

1. $ git push origin -d <tag1> <tag2>

The above command will delete both tags from the server.

Git Checkout Tags

There is no actual concept of check out the tags in git. However, we can do it by creating

a new branch from a tag. To check out a tag, run the below command:

Syntax:

1. $ git checkout -b < new branch name> <tag name>

The above command will create a new branch with the same state of the repository as it

is in the tag. Consider the below output:

The above command will create a new branch and transfer the status of the repository

to new_branchv1.1 as it is on tag projectv1.1.

Create a tag from an older commit:

If you want to go back to your history and want to create a tag on that point. Git allows

you to do so. To create a tag from an older commit, run the below command:

1. < git tag <tagname> < reference of commit>

In the above command, it is not required to give all of the 40 digit number; you can give

a part of it.

Suppose I want to create a tag for my older commit, then the process will be as follows:

Check the older commits:

To check the older commit, run the git status command. It will operate as follows:

1. $ git status

Consider the below output:

The above output is showing the older commits. Suppose I want to create a tag for my

commit, starting with 828b9628. Copy the particular reference of the commit. And pass

it as an argument in the above command. Consider the below output:

In the above output, an earlier version of the repository is tagged as an olderversion.

Upstream and Downstream

The term upstream and downstream refers to the repository. Generally, upstream is from

where you clone the repository, and downstream is any project that integrates your work

with other works. However, these terms are not restricted to Git repositories.

There are two different contexts in Git for upstream/downstream, which are remotes and

time/history. In the reference of remote upstream/downstream, the downstream repo will

be pulled from the upstream repository. Data will flow downstream naturally.

In the reference of time/history, it can be unclear, because upstream in time means

downstream in history, and vice-versa. So it is better if we use the parent/child terms in

place of upstream/downstream in case of time/history.

Java Try Catch

Git set-upstream

The git set-upstream allows you to set the default remote branch for your current local

branch. By default, every pull command sets the master as your default remote branch.

Sometimes we are trying to push some changes to the remote server, but it will show the

error like "error: failed to push some refs to 'https :< remote repository Address>."

There may be the reason that you have not set your remote branch. We can set the remote

branch for the local branch. We will implement the following process to set the remote

server:

To check the remote server, use the below command:

1. $ git remote -v

It will result as follows:

The above output is displaying the remote server name. To better understand remote

server, Click here. Now, check the available branches, run the below command:

1. $ git branch -a

It will result as follows:

The above command will list the branches on the local and remote repository. To learn

more about branches, click here. Now push the changes to remote server and set the

particular branch as default remote branch for the local repository. To push the changes

and set the remote branch as default, run the below command:

1. $ git push --set-upstream origin master

The above command will set the master branch as the default remote branch. To better

understand the origin master click here.

Consider the below output:

In the given output, everything is up to date with the remote branch.

We can also set the default remote branch by using the git branch command. To do so,

run the below command:

1. $ git branch --set-upstream-to origin master

To display default remote branches, run the below command:

1. $ git branch -vv

Consider the below output:

The above output is displaying the branches available on the repository. We can see that

the default remote branch is specified by highlighted letters.

Git Checkout

In Git, the term checkout is used for the act of switching between different versions of a

target entity. The git checkout command is used to switch between branches in a

repository. Be careful with your staged files and commits when switching between

branches.

The git checkout command operates upon three different entities which are files, commits,

and branches. Sometimes this command can be dangerous because there is no undo

option available on this command.

It checks the branches and updates the files in the working directory to match the version

already available in that branch, and it forwards the updates to Git to save all new commit

in that branch.

C++ vs Java

Operations on Git Checkout

We can perform many operations by git checkout command like the switch to a specific

branch, create a new branch, checkout a remote branch, and more. The git

branch and git checkout commands can be integrated.

Checkout Branch

You can demonstrate how to view a list of available branches by executing the git branch

command and switch to a specified branch.

To demonstrate available branches in repository, use the below command:

1. $ git branch

Now, you have the list of available branches. To switch between branches, use the below

command.

Syntax:

1. $ git checkout <branchname>

Output:

As you can see in the given output that master branch has switched to TestBranch.

Create and Switch Branch

The git checkout commands let you create and switch to a new branch. You can not only

create a new branch but also switch it simultaneously by a single command. The git

checkout -b option is a convenience flag that performs run git branch <new-

branch>operation before running git checkout <new-branch>.

Syntax:

1. $ git checkout -b <branchname>

Output:

As you can see in the given output, branch3 is created and switched from the master

branch.

Checkout Remote Branch

Git allows you to check out a remote branch by git checkout command. It is a way for a

programmer to access the work of a colleague or collaborator for review and

collaboration. Each remote repository contains its own set of branches. So, to check out

a remote branch, you have first to fetch the contents of the branch.

1. $ git fetch --all

In the latest versions of Git, you can check out the remote branch like a local branch.

Syntax:

1. $ git checkout <remotebranch>

Output:

In the above output, first, the fetch command is executed to fetch the remote data; after

that, the checkout command is executed to check out a remote branch.

Edited is my remote branch. Here, we have switched to edited branch from master branch

by git command line.

The earlier versions of Git require the creation of a new branch based on the remote. In

earlier versions, below command is used to check out the remote branch.

1. $ git checkout <remotebranch> origin/<remotebranch>

Git Revert

In Git, the term revert is used to revert some changes. The git revert command is used to

apply revert operation. It is an undo type command. However, it is not a traditional undo

alternative. It does not delete any data in this process; instead, it will create a new change

with the opposite effect and thereby undo the specified commit. Generally, git revert is a

commit.

It can be useful for tracking bugs in the project. If you want to remove something from

history then git revert is a wrong choice.

Moreover, we can say that git revert records some new changes that are just opposite to

previously made commits. To undo the changes, run the below command:

Abstract Class vs Interface | Difference between Abstract class and Interface in Java

Syntax:

1. $ git revert

Git Revert Options:

Git revert allows some additional operations like editing, no editing, cleanup, and more.

Let's understand these options briefly:

< commit>: The commit option is used to revert a commit. To revert a commit, we need

the commit reference id. The git log command can access it.

1. $ git revert <commit-ish>

<--edit>: It is used to edit the commit message before reverting the commit. It is a

default option in git revert command.

1. $ git revert -e <commit-ish>

-m parent-number /--mainline parent-number: it is used to revert the merging.

Generally, we cannot revert a merge because we do not know which side of the merge

should be considered as the mainline. We can specify the parent number and allows revert

to reverse the change relative to the specified parent.

-n/--no edit: This option will not open a text editor. It will directly revert the last commit.

1. $ git revert -n <commit-ish>

--cleanup=<mode>: The cleanup option determines how to strip spaces and comments

from the message.

-n/--no-commit: Generally, the revert command commits by default. The no-commit

option will not automatically commit. In addition, if this option is used, your index does

not have to match the HEAD commit.

The no-commit option is beneficial for reverting more than one commits effect to your

index in a row.

Let's understand how to revert the previous commits.

Git Revert to Previous Commit

Suppose you have made a change to a file say newfile2.txt of your project. And later,

you remind that you have made a wrong commit in the wrong file or wrong branch. Now,

you want to undo the changes you can do so. Git allows you to correct your mistakes.

Consider the below image:

As you can see from the above output that I have made changes in newfile2.txt. We can

undo it by git revert command. To undo the changes, we will need the commit-ish. To

check the commit-ish, run the below command:

1. $ git log

Consider the below output:

In the above output, I have copied the most recent commit-ish to revert. Now, I will

perform the revert operation on this commit. It will operate as:

1. $ git revert 099a8b4c8d92f4e4f1ecb5d52e09906747420814

The above command will revert my last commit. Consider the below output:

As you can see from the above output, the changes made on the repository have been

reverted.

Git Revert Merge

In Git, merging is also a commit that has at least two parents. It connects branches and

code to create a complete project.

A merge in Git is a commit that has at least two parents. It brings together multiple lines

of development. In a work-flow where features are developed in branches and then

merged into a mainline, the merge commits would typically have two parents.

How to Revert a Merge

Usually, reverting a merge considered a complicated process. It can be complex if not

done correctly. We are going to undo a merge operation with the help of git revert

command. Although some other commands like git reset can do it. Let's understand how

to revert a merge. Consider the below example.

I have made some changes to my file design2.css on the test and merge it with test2.

Consider the below output:

To revert a merge, we have to get its reference number. To check commit history, run the

below command:

1. $ git log

The above command will display the commit history. Consider the below output:

From the above output, copy your merging commit that you to want to revert and run

the below command:

1. $ git revert <commit reference> -m 1

The above command will revert the merging operation. Here, -m 1 is used for the first

parent as the mainline. Merge commit has multiple parents. The revert needs additional

information to decide which parent of the merge shall be considered as the mainline. In

such cases, the parameter -m is used. Consider the below output:

From the above output, we can see that the previous merge has been reverted.

Git Reset

The term reset stands for undoing changes. The git reset command is used to reset the

changes. The git reset command has three core forms of invocation. These forms are as

follows.

o Soft

o Mixed

o Hard

If we say in terms of Git, then Git is a tool that resets the current state of HEAD to a

specified state. It is a sophisticated and versatile tool for undoing changes. It acts as a time

machine for Git. You can jump up and forth between the various commits. Each of these

reset variations affects specific trees that git uses to handle your file in its content.

Additionally, git reset can operate on whole commits objects or at an individual file level.

Each of these reset variations affects specific trees that git uses to handle your file and its

contents.

Java Array MCQ Set 1

Git uses an index (staging area), HEAD, and working directory for creating and reverting

commits. If you have no idea about what is Head, trees, index, then do visit here Git

Index and Git Head.

The working directory lets you change the file, and you can stage into the index. The

staging area enables you to select what you want to put into your next commit. A commit

object is a cryptographically hashed version of the content. It has some Metadata and

points which are used to switch on the previous commits.

Let's understand the different uses of the git reset command.

Git Reset Hard

It will first move the Head and update the index with the contents of the commits. It is the

most direct, unsafe, and frequently used option. The --hard option changes the Commit

History, and ref pointers are updated to the specified commit. Then, the Staging Index

and Working Directory need to reset to match that of the specified commit. Any

previously pending commits to the Staging Index and the Working Directory gets reset

to match Commit Tree. It means any awaiting work will be lost.

Let's understand the --hard option with an example. Suppose I have added a new file to

my existing repository. To add a new file to the repository, run the below command:

1. $ git add <file name>

To check the status of the repository, run the below command:

1. $ git status

To check the status of the Head and previous commits, run the below command:

1. $ git log

Consider the below image:

In the above output, I have added a file named newfile2.txt. I have checked the status of

the repository. We can see that the current head position yet not changed because I have

not committed the changes. Now, I am going to perform the reset --hard option. The git

reset hard command will be performed as:

1. $ git reset --hard

Consider the below output:

As you can see in the above output, the -hard option is operated on the available

repository. This option will reset the changes and match the position of the Head before

the last changes. It will remove the available changes from the staging area. Consider the

below output:

The above output is displaying the status of the repository after the hard reset. We can

see there is nothing to commit in my repository because all the changes removed by the

reset hard option to match the status of the current Head with the previous one. So the

file newfile2.txt has been removed from the repository.

There is a safer way to reset the changes with the help of git stash.

Generally, the reset hard mode performs below operations:

o It will move the HEAD pointer.

o It will update the staging Area with the content that the HEAD is pointing.

o It will update the working directory to match the Staging Area.

Git Reset Mixed

A mixed option is a default option of the git reset command. If we would not pass any

argument, then the git reset command considered as --mixed as default option. A mixed

option updates the ref pointers. The staging area also reset to the state of a specified

commit. The undone changes transferred to the working directory. Let's understand it

with an example.

Let's create a new file say newfile2.txt. Check the status of the repository. To check the

status of the repository, run the below command:

1. $ git status

It will display the untracked file from the staging area. Add it to the index. To add a file

into stage index, run the git add command as:

1. $ git add <filename>

The above command will add the file to the staging index. Consider the below output:

In the above output, I have added a newfile2.txt to my local repository. Now, we will

perform the reset mixed command on this repository. It will operate as:

1. $ git reset --mixed

Or we can use only git reset command instead of this command.

1. $ git reset

The above command will reset the status of the Head, and it will not delete any data from

the staging area to match the position of the Head. Consider the below output:

From the above output, we can see that we have reset the position of the Head by

performing the git reset -mixed command. Also, we have checked the status of the

repository. As we can see that the status of the repository has not been changed by this

command. So it is clear that the mixed-mode does not clear any data from the staging

area.

Generally, the reset mixed mode performs the below operations:

o It will move the HEAD pointer

o It will update the Staging Area with the content that the HEAD is pointing to.

It will not update the working directory as git hard mode does. It will only reset the index

but not the working tree, then it generates the report of the files which have not been

updated.

If -N is specified on the command line, then the statements will be considered as intent-

to-add by Git.

Git Reset Head (Git Reset Soft)

The soft option does not touch the index file or working tree at all, but it resets the Head

as all options do. When the soft mode runs, the refs pointers updated, and the resets stop

there. It will act as git amend command. It is not an authoritative command. Sometimes

developers considered it as a waste of time.

Generally, it is used to change the position of the Head. Let's understand how it will

change the position of the Head. It will use as:

1. $ git reset--soft <commit-sha>

The above command will move the HEAD to the particular commit. Let's understand it

with an example.

I have made changes in my file newfile2.txt and commit it. So, the current position of Head

is shifted on the latest commit. To check the status of Head, run the below command:

1. $ git log

Consider the below output:

From the above output, you can see that the current position of the HEAD is on

f1d4b486f2eeefe575194d51ec3a54926ab05ef7 commit. But, I want to switch it on my

older commit 2c5a8820091654ac5b8beed774fe6061954cfe92. Since the commit-sha

number is a unique number that is provided by sha algorithm. To switch the HEAD, run

the below command:

1. $ git reset --soft 2c5a8820091654

The above command will shift my HEAD to a particular commit. Consider the below

output:

As you can see from the above output, the HEAD has been shifted to a particular commit

by git reset --soft mode.

Git Reset to Commit

Sometimes we need to reset a particular commit; Git allows us to do so. We can reset to

a particular commit. To reset it, git reset command can be used with any option supported

by reset command. It will take the default behavior of a particular command and reset the

given commit. The syntax for resetting commit is given below:

1. $ git reset <option> <commit-sha>

These options can be

o --soft

o --mixed

o --Hard

Git Rm

In Git, the term rm stands for remove. It is used to remove individual files or a collection

of files. The key function of git rm is to remove tracked files from the Git index.

Additionally, it can be used to remove files from both the working directory and staging

index.

The files being removed must be ideal for the branch to remove. No updates to their

contents can be staged in the index. Otherwise, the removing process can be complex,

and sometimes it will not happen. But it can be done forcefully by -f option.

Let's understand it with an example.

OOPs Concepts in Java

The git rm command

The git rm command is used to remove the files from the working tree and the index.

If we want to remove the file from our repository. Then it can be done by the git rm

command. Let's take a file say newfile.txt to test the rm command. The git rm command

will be operated as:

1. $ git rm <file Name>

The above command will remove the file from the Git and repository. The git rm command

removes the file not only from the repository but also from the staging area. If we check

the status of the repository, then it will show as deleted. Consider the below output:

In the above output, the file newfile.txt has been removed from the version control

system. So the repository and the status are shown as deleted. If we use only the rm

command, then it will not permanently delete the file from the Git. It can be tracked in

the staging area. Consider the below output:

In the above output, the file newfile2.txt has been deleted. But when we check the status

of the repository, we can track the file in the staging area. It means the newfile2 yet not

deleted from the staging area, and it is also available in the repository. We can get it back

on the version control system by committing it. To commit the file, first, add it to the index

and then commit it. To add this file in the index, run the below command:

1. $ git add newfile2.txt

The above command will add the file to the index. To commit it, run the below command:

1. $ git commit -m "commit message."

It will commit the file and make it available to the version control system. Consider the

below output:

In the above output, we are retrieving the file from the staging area to our directory. The

newfile2.txt is re-added to our repository.

Git Rm Cached

Sometimes you want to remove files from the Git but keep the files in your local

repository. In other words, you do not want to share your file on Git. Git allows you to do

so. The cached option is used in this case. It specifies that the removal operation will only

act on the staging index, not on the repository. The git rm command with cached option

will be uses as:

1. $ git rm --cached <file name>

The above command will remove a file from the version control system. The deleted file

will remain in the repository. Somehow this command will act as rm command. Let's

understand it with an example.

Suppose we want to remove a file from Git, take newfile1.txt for operation to remove

this file, use the below command:

1. $ git rm --cached newfile1.txt

The above command will delete the file from the version control system, but still, it can

be tracked in the repository. It also can be re-added on the version control system. To

check the file status, use the status command as:

1. $ git status

Consider the below output:

As we can see from the above output, the newfile1.txt file is deleted from the version

control system, but it can be tracked in the repository. This file is available on the version

control system as an untracked file. We can track it by committing it.

Undo the Git Rm Command

Execution of git rm command is not permanent; it can be reverted after execution. These

changes cannot be persisted until a new commit is made on the repository. We can undo

the git rm command. There are several ways to do so. The most usual and straight-forward

way is git reset command. The git reset command will be used as follows:

1. $ git reset HEAD

Or we can also use:

1. $ git reset --hard

The above command will reset the position of the head. So that it will get the position of

its just previous point. Consider the below output:

From the above output, we can see that the file has been successfully reset to its previous

position.

There is another way to undo the git rm command. We can also do it by git checkout

command. A checkout has the same effect and restores the latest version of a file from

HEAD. It will be used as follows:

1. $ git checkout.

Limits of Git Rm command

The git rm is operated only on the current branch. The removing process is only applied

to the working directory and staging index trees. It is not persisted in the repository

history until a new commit is created.

Git Cherry-pick

Cherry-picking in Git stands for applying some commit from one branch into another

branch. In case you made a mistake and committed a change into the wrong branch, but

do not want to merge the whole branch. You can revert the commit and apply it on

another branch.

The main motive of a cherry-pick is to apply the changes introduced by some existing

commit. A cherry-pick looks at a previous commit in the repository history and update

the changes that were part of that last commit to the current working tree. The definition

is straight forward, yet it is more complicated when someone tries to cherry-pick a

commit, or even cherry-pick from another branch.

Cherry-pick is a useful tool, but always it is not a good option. It can cause duplicate

commits and some other scenarios where other merges are preferred instead of cherry-

picking. It is a useful tool for a few situations. It is in contrast with different ways such

as merge and rebase command. Merge and rebase can usually apply many commits in

another branch.

OOPs Concepts in Java

Why Cherry-Pick

Suppose you are working with a team of developers on a medium to large-sized project.

Some changes proposed by another team member and you want to apply some of them

to your main project, not all. Since managing the changes between several Git branches

can become a complex task, and you don't want to merge a whole branch into another

branch. You only need to pick one or two specific commits. To pick some changes into

your main project branch from other branches is called cherry-picking.

Some scenarios in which you can cherry-pick:

Scenerio1: Accidently make a commit in a wrong branch.

Git cherry-pick is helpful to apply the changes that are accidentally made in the wrong

branch. Suppose I want to make a commit in the master branch, but by mistake, we made

it in any other branch. See the below commit.

In the above example, I want to make a commit for the master branch, but accidentally I

made it in the new branch. To make all the changes of the new branch into the master

branch, we will use the git pull, but for this particular commit, we will use git cherry-pick

command. See the below output:

In the given output, I have used the git log command to check the commit history. Copy

the particular commit id that you want to make on the master branch. Now switch to

master branch and cherry-pick it there. See the below output:

Syntax:

1. $ git cherry-pick <commit id>

Output:

From the given output, you can see that I have pasted the commit id with git cherry-pick

command and made that commit into my master branch. You can check it by git log

command.

Scenario2: Made the changes proposes by another team member.

Another use of cherry-picking is to make the changes proposed by another team member.

Suppose one of my team members made any changes in the main project and suggests

it for the main project. You can cheery-pick it after review.

Usage of cherry-pick

o It is a handy tool for team collaboration.

o It is necessary in case of bug fixing because bugs are fixed and tested in the

development branch with their commits.

o It is mostly used in undoing changes and restoring lost commits.

o You can avoid useless conflicts by using git cherry-pick instead of other options.

o It is a useful tool when a full branch merge is not possible due to incompatible

versions in the various branches.

o The git cherry-pick is used to access the changes introduced to a sub-branch,

without changing the branch.

Git log

The advantage of a version control system is that it records changes. These records allow

us to retrieve the data like commits, figuring out bugs, updates. But, all of this history will

be useless if we cannot navigate it. At this point, we need the git log command.

Git log is a utility tool to review and read a history of everything that happens to a

repository. Multiple options can be used with a git log to make history more specific.

Generally, the git log is a record of commits. A git log contains the following data:

OOPs Concepts in Java

o A commit hash, which is a 40 character checksum data generated by SHA (Secure

Hash Algorithm) algorithm. It is a unique number.

o Commit Author metadata: The information of authors such as author name and

email.

o Commit Date metadata: It's a date timestamp for the time of the commit.

o Commit title/message: It is the overview of the commit given in the commit

message.

How to Exit the git log Command?

There may be a situation that occurs, you run the git log command, and you stuck there.

You want to type or back to bash, but you can't. When you click the Enter key, it will

navigate you to the older command until the end flag.

The solution to this problem is to press the q (Q for quit). It will quit you from the

situation and back you to the command line. Now, you can perform any of the commands.

Basic Git log

Git log command is one of the most usual commands of git. It is the most useful command

for Git. Every time you need to check the history, you have to use the git log command.

The basic git log command will display the most recent commits and the status of the

head. It will use as:

1. $ git log

The above command will display the last commits. Consider the below output:

The above command is listing all the recent commits. Each commit contains some unique

sha-id, which is generated by the SHA algorithm. It also includes the date, time, author,

and some additional details.

We can perform some action like scrolling, jumping, move, and quit on the command line.

To scroll on the command line press k for moving up, j for moving down, the spacebar for

scrolling down by a full page to scroll up by a page and q to quit from the command line.

<

Git Log Oneline

The oneline option is used to display the output as one commit per line. It also shows the

output in brief like the first seven characters of the commit SHA and the commit message.

It will be used as follows:

1. $ git log --oneline

So, usually we can say that the --oneline flag causes git log to display:

o one commit per line

o the first seven characters of the SHA

o the commit message

Consider the below output:

As we can see more precisely from the above output, every commit is given only in one

line with a seven-digit sha number and commit message.

Git Log Stat

The log command displays the files that have been modified. It also shows the number of

lines and a summary line of the total records that have been updated.

Generally, we can say that the stat option is used to display

o the modified files,

o The number of lines that have been added or removed

o A summary line of the total number of records changed

o The lines that have been added or removed.

It will be used as follows:

1. $ git log --stat

The above command will display the files that have been modified. Consider the below

output:

From the above output, we can see that all listed commits are modifications in the

repository.

Git log P or Patch

The git log patch command displays the files that have been modified. It also shows the

location of the added, removed, and updated lines.

It will be used as:

1. $ git log --patch

Or

1. $ git log -p

Generally, we can say that the --patch flag is used to display:

o Modified files

o The location of the lines that you added or removed

o Specific changes that have been made.

Consider the below output:

The above output is displaying the modified files with the location of lines that have been

added or removed.

Git Log Graph

Git log command allows viewing your git log as a graph. To list the commits in the form

of a graph, run the git log command with --graph option. It will run as follows:

1. $ git log --graph

To make the output more specific, you can combine this command with --oneline option.

It will operate as follows:

1. $ git log --graph --oneline

Filtering the Commit History

We can filter the output according to our needs. It's a unique feature of Git. We can apply

many filters like amount, date, author, and more on output. Each filter has its

specifications. They can be used for implementing some navigation operations on output.

Let's understand each of these filters in detail.

By Amount:

We can limit the number of output commit by using git log command. It is the most

specific command. This command will remove the complexity if you are interested in fewer

commits.

To limit the git log's output, including the -<n> option. If we want only the last three

commit, then we can pass the argument -3 in the git log command. Consider the below

output:

As we can see from the above output, we can limit the output of git log.

By Date and Time:

We can filter the output by date and time. We have to pass --after or -before argument

to specify the date. These both argument accept a variety of date formats. It will run as

follows:

1. $ git log --after="yy-mm-dd"

The above command will display all the commits made after the given date. Consider the

below output:

The above command is listing all the commits after "2019-11-01".

We can also pass the applicable reference statement like "yesterday," "1 week ago", "21

days ago," and more. It will run as:

1. git log --after="21 days ago"

The above command will display the commits which have been made 21 days ago.

Consider the below output:

We can also track the commits between two dates. To track the commits that were created

between two dates, pass a statement reference --before and --after the date. Suppose,

we want to track the commits between "2019-11-01" and "2019-11-08". We will run the

command as follows:

1. $ git log --after="2019-11-01" --before="2019-11-08 "

The above command will display the commits made between the dates. Consider the

below output:

The above output is displaying the commits between the given period. We can use --since

and --until instead of --after and --before. Because they are synonyms, respectively.

By Author:

We can filter the commits by a particular user. Suppose, we want to list the commits only

made by a particular team member. We can use -author flag to filter the commits by

author name. This command takes a regular expression and returns the list of commits

made by authors that match that pattern. You can use the exact name instead of the

pattern. This command will run as follows:

1. $ git log --author="Author name"

The above command will display all the commits made by the given author. Consider the

below output:

From the above output, we can see that all the commits by the author ImDwivedi1 are

listed.

We can use a string instead of a regular expression or exact name. Consider the below

statement:

1. $ git log --author="Stephen"

The above statement will display all commits whose author includes the name, Stephen.

The author's name doesn't need to be an exact match; it just has the specified phrase.

As we know, the author's email is also involved with the author's name, so that we can

use the author's email as the pattern or exact search. Suppose, we want to track the

commits by the authors whose email service is google. To do so, we can use wild cards as

"@gmail.com." Consider the below statement:

1. $ git log -author="@gmail.com"

The above command will display the commits by authors as given in the pattern. Consider

the below output:

By Commit message:

To filter the commits by the commit message. We can use the grep option, and it will

work as the author option.

It will run as follows:

1. $ git log --grep=" Commit message."

We can use the short form of commit message instead of a complete message. Consider

the below output.

The above output is displaying all the commits that contain the word commit in its commit

message.

There are many other filtering options available like we can filter by file name, content,

and more.

Git Diff

Git diff is a command-line utility. It's a multiuse Git command. When it is executed, it runs

a diff function on Git data sources. These data sources can be files, branches, commits,

and more. It is used to show changes between commits, commit, and working tree, etc.

It compares the different versions of data sources. The version control system stands for

working with a modified version of files. So, the diff command is a useful tool for working

with Git.

However, we can also track the changes with the help of git log command with option -

p. The git log command will also work as a git diff command.

OOPs Concepts in Java

Let's understand different scenarios where we can utilize the git diff command.

Scenerio1: Track the changes that have not been staged.

The usual use of git diff command that we can track the changes that have not been

staged.

Suppose we have edited the newfile1.txt file. Now, we want to track what changes are not

staged yet. Then we can do so from the git diff command. Consider the below output:

From the above output, we can see that the changes made on newfile1.txt are displayed

by git diff command. As we have edited it as "changes are made to understand the git

diff command." So, the output is displaying the changes with its content. The highlighted

section of the above output is the changes in the updated file. Now, we can decide

whether we want to stage this file like this or not by previewing the changes.

Scenerio2: Track the changes that have staged but not committed:

The git diff command allows us to track the changes that are staged but not committed.

We can track the changes in the staging area. To check the already staged changes, use

the --staged option along with git diff command.

To check the untracked file, run the git status command as:

1. $ git status

The above command will display the untracked file from the repository. Now, we will add

it to the staging area. To add the file in the staging area, run the git add command as:

1. $ git add < file name>

The above command will add the file in the staging area. Consider the below output:

Now, the file is added to the staging area, but it is not committed yet. So, we can track

the changes in the staging area also. To check the staged changes, run the git diff

command along with --staged option. It will be used as:

1. $ git diff --staged

The above command will display the changes of already staged files. Consider the below

output:

The given output is displaying the changes of newfile1.txt, which is already staged.

Scenerio3: Track the changes after committing a file:

Git, let us track the changes after committing a file. Suppose we have committed a file for

the repository and made some additional changes after the commit. So we can track the

file on this stage also.

In the below output, we have committed the changes that we made on our newfile1.txt.

Consider the below output:

Now, we have changed the newfile.txt file again as "Changes are made after committing

the file." To track the changes of this file, run the git diff command with HEAD argument.

It will run as follows:

1. $ git diff HEAD

The above command will display the changes in the terminal. Consider the below output:

The above command is displaying the updates of the file newfile1.txt on the highlighted

section.

Scenario4: Track the changes between two commits:

We can track the changes between two different commits. Git allows us to track changes

between two commits, whether it is the latest commit or the old commit. But the required

thing for this is that we must have a list of commits so that we can compare. The usual

command to list the commits in the git log command. To display the recent commits, we

can run the command as:

1. $ git log

The above command will list the recent commits.

Suppose, we want to track changes of a specified from an earlier commit. To do so, we

must need the commits of that specified file. To display the commits of any specified, run

the git log command as:

1. $ git log -p --follow -- filename

The above command will display all the commits of a specified file. Consider the below

output:

The above output is displaying all the commits of newfile1.txt. Suppose we want to track

the changes between commits e553fc08cb and f1ddc7c9e7. The git diff command lets

track the changes between two commits. It will be commanded as:

1. $ git diff <commit1-sha> <commit2-sha>

The above command will display the changes between two commits. Consider the below

output:

The above output is displaying all the changes made on newfile1.txt from

commit e553fc08cb (most recent) to commit f1ddc7c9e7 (previous).

Git Diff Branches

Git allows comparing the branches. If you are a master in branching, then you can

understand the importance of analyzing the branches before merging. Many conflicts can

arise if you merge the branch without comparing it. So to avoid these conflicts, Git allows

many handy commands to preview, compare, and edit the changes.

We can track changes of the branch with the git status command, but few more

commands can explain it in detail. The git diff command is a widely used tool to track the

changes.

The git diff command allows us to compare different versions of branches and repository.

To get the difference between branches, run the git diff command as follows:

1. $ git diff <branch 1> < branch 2>

The above command will display the differences between branch 1 and branch 2. So that

you can decide whether you want to merge the branch or not. Consider the below output:

The above output is displaying the differences between my repository

branches test and test2. The git diff command is giving a preview of both branches. So,

it will be helpful to perform any operation on branches.

Git Status

The git status command is used to display the state of the repository and staging area. It

allows us to see the tracked, untracked files and changes. This command will not show

any commit records or information.

Mostly, it is used to display the state between Git Add and Git commit command. We

can check whether the changes and files are tracked or not.

Let's understand the different states of status command.

OOPs Concepts in Java

Status when Working Tree is cleaned

Before starting with git status command, let's see how the git status looks like when there

are no changes made. To check the status, open the git bash, and run the status command

on your desired directory. It will run as follows:

1. $ git status

Output:

Since there is nothing to track or untrack in the working tree, so the output is showing as

the working tree is clean.

Status when a new file is created

When we create a file in the repository, the state of the repository changes. Let's create a

file using the touch command. Now, check the status using the status command.

Consider the below output:

As we can see from the above output, the status is showing as "nothing added to commit

but untracked files present (use "git add" to track)". The status command also displays

the suggestions. As in the above output, it is suggesting to use the add command to track

the file.

Let's track the file and will see the status after adding a file to the repository. To track the

file, run the add command. Consider the below output:

From the above output, we can see that the status after staging the file is showing as

"changes to be committed".

Before committing blindly, we can check the status. This command will help us to avoid

the changes that we don't want to commit. Let's commit it and then check the status.

Consider the below output:

We can see that the current status after committing the file is clean as it was before.

Status when an existing file is modified

Let's check the status when an existing file is modified. To modify file, run

the echo command as follows:

1. $ echo "Text"> Filename

The above command will add the text to the specified file, now check the status of the

repository. Consider the below output:

We can see that the updated file is displayed as untracked files. It is shown in red color

because it is not staged yet. When it will stage, its color will change to Green. Consider

the below output:

Status when a file is deleted

Let's check the status when a file is deleted from the repository. To delete a file from the

repository, run the rm command as follows:

1. $ git rm < File Name>

The above command will delete the specified file from the repository. Now, check the

status of the repository. Consider the below output:

The current status of the repository has been updated as deleted.

Git Branch

A branch is a version of the repository that diverges from the main working project. It is

a feature available in most modern version control systems. A Git project can have more

than one branch. These branches are a pointer to a snapshot of your changes. When you

want to add a new feature or fix a bug, you spawn a new branch to summarize your

changes. So, it is complex to merge the unstable code with the main code base and also

facilitates you to clean up your future history before merging with the main branch.

Git Master Branch

The master branch is a default branch in Git. It is instantiated when first commit made on

the project. When you make the first commit, you're given a master branch to the starting

commit point. When you start making a commit, then master branch pointer automatically

moves forward. A repository can have only one master branch.

Master branch is the branch in which all the changes eventually get merged back. It can

be called as an official working version of your project.

OOPs Concepts in Java

Operations on Branches

We can perform various operations on Git branches. The git branch command allows

you to create, list, rename and delete branches. Many operations on branches are

applied by git checkout and git merge command. So, the git branch is tightly integrated

with the git checkout and git merge commands.

The Operations that can be performed on a branch:

Create Branch

You can create a new branch with the help of the git branch command. This command

will be used as:

Syntax:

1. $ git branch <branch name>

Output:

This command will create the branch B1 locally in Git directory.

List Branch

You can List all of the available branches in your repository by using the following

command.

Either we can use git branch - list or git branch command to list the available branches

in the repository.

Syntax:

1. $ git branch --list

or

1. $ git branch

Output:

Here, both commands are listing the available branches in the repository. The symbol * is

representing currently active branch.

Delete Branch

You can delete the specified branch. It is a safe operation. In this command, Git prevents

you from deleting the branch if it has unmerged changes. Below is the command to do

this.

Syntax:

1. $ git branch -d<branch name>

Output:

This command will delete the existing branch B1 from the repository.

The git branch d command can be used in two formats. Another format of this command

is git branch D. The 'git branch D' command is used to delete the specified branch.

1. $ git branch -D <branch name>

Delete a Remote Branch

You can delete a remote branch from Git desktop application. Below command is used to

delete a remote branch:

Syntax:

1. $ git push origin -delete <branch name>

Output:

As you can see in the above output, the remote branch named branch2 from my GitHub

account is deleted.

Switch Branch

Git allows you to switch between the branches without making a commit. You can switch

between two branches with the git checkout command. To switch between the branches,

below command is used:

1. $ git checkout<branch name>

Switch from master Branch

You can switch from master to any other branch available on your repository without

making any commit.

Syntax:

1. $ git checkout <branch name>

Output:

As you can see in the output, branches are switched from master to branch4 without

making any commit.

Switch to master branch

You can switch to the master branch from any other branch with the help of below

command.

Syntax:

1. $ git branch -m master

Output:

As you can see in the above output, branches are switched from branch1 to

master without making any commit.

Rename Branch

We can rename the branch with the help of the git branch command. To rename a

branch, use the below command:

Syntax:

1. $ git branch -m <old branch name><new branch name>

Output:

As you can see in the above output, branch4 renamed as renamedB1.

Merge Branch

Git allows you to merge the other branch with the currently active branch. You can merge

two branches with the help of git merge command. Below command is used to merge

the branches:

Syntax:

1. $ git merge <branch name>

Output:

From the above output, you can see that the master branch merged with renamedB1.

Since I have made no-commit before merging, so the output is showing as already up to

date.

Git Merge and Merge Conflict

In Git, the merging is a procedure to connect the forked history. It joins two or more

development history together. The git merge command facilitates you to take the data

created by git branch and integrate them into a single branch. Git merge will associate a

series of commits into one unified history. Generally, git merge is used to combine two

branches.

It is used to maintain distinct lines of development; at some stage, you want to merge the

changes in one branch. It is essential to understand how merging works in Git.

In the above figure, there are two branches master and feature. We can see that we made

some commits in both functionality and master branch, and merge them. It works as a

pointer. It will find a common base commit between branches. Once Git finds a shared

base commit, it will create a new "merge commit." It combines the changes of each

queued merge commit sequence.

OOPs Concepts in Java

The "git merge" command

The git merge command is used to merge the branches.

The syntax for the git merge command is as:

1. $ git merge <query>

It can be used in various context. Some are as follows:

Scenario1: To merge the specified commit to currently active branch:

Use the below command to merge the specified commit to currently active branch.

1. $ git merge <commit>

The above command will merge the specified commit to the currently active branch. You

can also merge the specified commit to a specified branch by passing in the branch name

in <commit>. Let's see how to commit to a currently active branch.

See the below example. I have made some changes in my project's file newfile1.txt and

committed it in my test branch.

Copy the particular commit you want to merge on an active branch and perform the

merge operation. See the below output:

In the above output, we have merged the previous commit in the active branch test2.

Scenario2: To merge commits into the master branch:

To merge a specified commit into master, first discover its commit id. Use the log

command to find the particular commit id.

1. $git log

See the below output:

To merge the commits into the master branch, switch over to the master branch.

1. $ git checkout master

Now, Switch to branch 'master' to perform merging operation on a commit. Use the git

merge command along with master branch name. The syntax for this is as follows:

1. $ git merge master

See the below output:

As shown in the above output, the commit for the commit

id 2852e020909dfe705707695fd6d715cd723f9540 has merged into the master

branch. Two files have changed in master branch. However, we have made this commit in

the test branch. So, it is possible to merge any commit in any of the branches.

Open new files, and you will notice that the new line that we have committed to the test

branch is now copied on the master branch.

Scenario 3: Git merge branch.

Git allows merging the whole branch in another branch. Suppose you have made many

changes on a branch and want to merge all of that at a time. Git allows you to do so. See

the below example:

In the given output, I have made changes in newfile1 on the test branch. Now, I have

committed this change in the test branch.

Now, switch to the desired branch you want to merge. In the given example, I have

switched to the master branch. Perform the below command to merge the whole branch

in the active branch.

1. $ git merge <branchname>

As you can see from the given output, the whole commits of branch test2 have merged

to branch master.

Git Merge Conflict

When two branches are trying to merge, and both are edited at the same time and in the

same file, Git won't be able to identify which version is to take for changes. Such a situation

is called merge conflict. If such a situation occurs, it stops just before the merge commit

so that you can resolve the conflicts manually.

Let's understand it by an example.

Suppose my remote repository has cloned by two of my team member user1 and user2.

The user1 made changes as below in my projects index file.

Update it in the local repository with the help of git add command.

Now commit the changes and update it with the remote repository. See the below output:

Now, my remote repository will look like this:

It will show the status of the file like edited by whom and when.

Now, at the same time, user2 also update the index file as follows.

User2 has added and committed the changes in the local repository. But when he tries to

push it to remote server, it will throw errors. See the below output:

In the above output, the server knows that the file is already updated and not merged

with other branches. So, the push request was rejected by the remote server. It will throw

an error message like [rejected] failed to push some refs to <remote URL>. It will

suggest you to pull the repository first before the push. See the below command:

In the given output, git rebase command is used to pull the repository from the remote

URL. Here, it will show the error message like merge conflict in <filename>.

Resolve Conflict:

To resolve the conflict, it is necessary to know whether the conflict occurs and why it

occurs. Git merge tool command is used to resolve the conflict. The merge command is

used as follows:

1. $ git mergetool

In my repository, it will result in:

The above output shows the status of the conflicted file. To resolve the conflict, enter in

the insert mode by merely pressing I key and make changes as you want. Press the Esc

key, to come out from insert mode. Type the: w! at the bottom of the editor to save and

exit the changes. To accept the changes, use the rebase command. It will be used as

follows:

1. $ git rebase --continue

Hence, the conflict has resolved. See the below output:

In the above output, the conflict has resolved, and the local repository is synchronized

with a remote repository.

To see that which is the first edited text of the merge conflict in your file, search the file

attached with conflict marker <<<<<<<. You can see the changes from the HEAD or

base branch after the line <<<<<<< HEAD in your text editor. Next, you can see the

divider like =======. It divides your changes from the changes in the other

branch, followed by >>>>>>> BRANCH-NAME. In the above example, user1 wrote

"<h1> Git is a version control</h1>" in the base or HEAD branch and user2 wrote "<h2>

Git is a version control</h2>".

Decide whether you want to keep only your branch's changes or the other branch's

changes, or create a new change. Delete the conflict markers <<<<<<<, =======,

>>>>>>> and create final changes you want to merge.

Git Rebase

Rebasing is a process to reapply commits on top of another base trip. It is used to apply

a sequence of commits from distinct branches into a final commit. It is an alternative of

git merge command. It is a linear process of merging.

In Git, the term rebase is referred to as the process of moving or combining a sequence

of commits to a new base commit. Rebasing is very beneficial and it visualized the process

in the environment of a feature branching workflow.

It is good to rebase your branch before merging it.

1.4M

176
OOPs Concepts in Java

Generally, it is an alternative of git merge command. Merge is always a forward changing

record. Comparatively, rebase is a compelling history rewriting tool in git. It merges the

different commits one by one.

Suppose you have made three commits in your master branch and three in your other

branch named test. If you merge this, then it will merge all commits in a time. But if you

rebase it, then it will be merged in a linear manner. Consider the below image:

The above image describes how git rebase works. The three commits of the master branch

are merged linearly with the commits of the test branch.

Merging is the most straightforward way to integrate the branches. It performs a three-

way merge between the two latest branch commits.

How to Rebase

When you made some commits on a feature branch (test branch) and some in the master

branch. You can rebase any of these branches. Use the git log command to track the

changes (commit history). Checkout to the desired branch you want to rebase. Now

perform the rebase command as follows:

Syntax:

1. $git rebase <branch name>

If there are some conflicts in the branch, resolve them, and perform below commands to

continue changes:

1. $ git status

It is used to check the status,

1. $git rebase --continue

The above command is used to continue with the changes you made. If you want to skip

the change, you can skip as follows:

1. $ git rebase --skip

When the rebasing is completed. Push the repository to the origin. Consider the below

example to understand the git merge command.

Suppose that you have a branch say test2 on which you are working. You are now on the

test2 branch and made some changes in the project's file newfile1.txt.

Add this file to repository:

1. $ git add newfile1.txt

Now, commit the changes. Use the below command:

1. $ git commit -m "new commit for test2 branch."

The output will look like:

[test2 a835504] new commitfor test2 branch

 1 file changed, 1 insertion(+)

Switch the branch to master:

1. $ git checkout master

Output:

Switched to branch 'master.'

Your branch is up to date with 'origin/master.'

Now you are on the master branch. I have added the changes to my file, says newfile.txt.

The below command is used to add the file in the repository.

1. $ git add newfile.txt

Now commit the file for changes:

1. $ git commit -m " new commit made on the master branch."

Output:

[master 7fe5e7a] new commit made on master

 1 file changed, 1 insertion(+)

HiMaNshU@HiMaNshU-PC MINGW64 ~/Desktop/GitExample2 (master)

To check the log history, perform the below command.

1. $ git log --oneline

Output:

As we can see in the log history, there is a new commit in the master branch. If I want to

rebase my test2 branch, what should I do? See the below rebase branch scenario:

Rebase Branch

If we have many commits from distinct branches and want to merge it in one. To do so,

we have two choices either we can merge it or rebase it. It is good to rebase your branch.

From the above example, we have committed to the master branch and want to rebase it

on the test2 branch. Let's see the below commands:

1. $ git checkout test2

This command will switch you on the test2 branch from the master.

Output:

Switched to branch 'test2.'

Now you are on the test2 branch. Hence, you can rebase the test2 branch with the master

branch. See the below command:

1. $ git rebase master

This command will rebase the test2 branch and will show as Applying: new commit on

test2 branch. Consider the below output:

Output:

Git Interactive Rebase

Git facilitates with Interactive Rebase; it is a potent tool that allows various operations

like edit, rewrite, reorder, and more on existing commits. Interactive Rebase can only be

operated on the currently checked out branch. Therefore, set your local HEAD branch at

the sidebar.

Git interactive rebase can be invoked with rebase command, just type -i along with rebase

command. Here 'i' stands for interactive. Syntax of this command is given below:

Syntax:

1. $ git rebase -i

It will list all the available interactive options.

Output:

After the given output, it will open an editor with available options. Consider the below

output:

Output:

When we perform the git interactive rebase command, it will open your default text editor

with the above output.

The options it contains are listed below:

o Pick

o Reword

o Edit

o Squash

o Fixup

o Exec

o Break

o Drop

o Label

o Reset

o Merge

The above options perform their specific tasks with git-rebase. Let's understand each of

these options in brief.

Pick (-p):

Pick stands here that the commit is included. Order of the commits depends upon the

order of the pick commands during rebase. If you do not want to add a commit, you have

to delete the entire line.

Reword (-r):

The reword is quite similar to pick command. The reword option paused the rebase

process and provides a chance to alter the commit message. It does not affect any

changes made by the commit.

Edit (-e):

The edit option allows for amending the commit. The amending means, commits can be

added or changed entirely. We can also make additional commits before rebase continue

command. It allows us to split a large commit into the smaller commit; moreover, we can

remove erroneous changes made in a commit.

Squash (-s):

The squash option allows you to combine two or more commits into a single commit. It

also allows us to write a new commit message for describing the changes.

Fixup (-f):

It is quite similar to the squash command. It discarded the message of the commit to be

merged. The older commit message is used to describe both changes.

Exec (-x):

The exec option allows you to run arbitrary shell commands against a commit.

Break (-b):

The break option stops the rebasing at just position. It will continue rebasing later with

'git rebase --continue' command.

Drop (-d):

The drop option is used to remove the commit.

Label (-l):

The label option is used to mark the current head position with a name.

Reset (-t):

The reset option is used to reset head to a label.

GitMerge vs. Rebase

It is a most common puzzling question for the git user's that when to use merge command

and when to use rebase. Both commands are similar, and both are used to merge the

commits made by the different branches of a repository.

Rebasing is not recommended in a shared branch because the rebasing process will create

inconsistent repositories. For individuals, rebasing can be more useful than merging. If

you want to see the complete history, you should use the merge. Merge tracks the entire

history of commits, while rebase rewrites a new one.

Git rebase commands said as an alternative of git merge. However, they have some key

differences:

Git Squash

In Git, the term squash is used to squash the previous commits into one. It is not a

command; instead, it is a keyword. The squash is an excellent technique for group-specific

changes before forwarding them to others. You can merge several commits into a single

commit with the compelling interactive rebase command.

If you are a Git user, then you must have realized the importance of squashing a commit.

Especially if you are an open-source contributor, then many times, you have to create a

PR (pull request) with squashed commit. You can also squash commits if you have already

created a PR.

Let's understand how to squash commits?

OOPs Concepts in Java

Git Squash Commits

Being a responsible contributor to Git, it is necessary to make the collaboration process

efficient and meaningful. Git allows some powerful collaboration tools in different ways.

Git squash is one of the powerful tools that facilitate efficient and less painful

collaboration.

The squash is not any command; instead, it's one of many options available to you under

git interactive rebases. The squash allows us to rewrite history. Suppose we have made

many commits during the project work, squashing all the commits into a large commit is

the right choice than pushing. Let's understand how to squash two commits.

Step1: Check the commit history

To check the commit history, run the below command:

1. $ git log --oneline

The given command will display the history in one line. We can track the history and

choose the commits we want to squash. Consider the below output:

Step 2: Choose the commits to squash.

Suppose we want to squash the last commits. To squash commits, run the below

command:

1. $ git rebase -i HEAD ~3

The above command will open your default text editor and will squash the last three

commits. The editor will open as follows:

From the above image, we can see previous commits shown at the top of the editor. If we

want to merge them into a single commit, then we have to replace the

word pick with the squash on the top of the editor. To write on the editor, press 'i' button

to enter in insert mode. After editing the document, press the :wq to save and exit from

the editor.

Step 3: update the commits

On pressing enter key, a new window of the text editor will be opened to confirm the

commit. We can edit the commit message on this screen.

I am editing my first commit message because it will be a combination of all three

commits. Consider the below image:

The above image is the editor screen to confirm the merging of commits. Here we can

update the commit messages. To edit on this editor, press the 'i' button for insert mode

and edit the desired text. Press the :wq keys, to save and exit from the editor.

When we exit the editor, it will show the description of updates. Consider the below

output:

The above output is listing the description of changes that have been made on the

repository. Now, the commits have been squashed. Check the commit history for

confirmation with the help of the git log. Consider the below output:

Step 4: Push the squashed commit

Now, we can push this squashed commit on the remote server. To push this squashed

commit, run the below command:

1. $ git push origin master

Or

1. $ git push -f origin master

The above command will push the changes on the remote server. We can check this

commit on our remote repository. Consider the below image:

As you can see from the above image. A new commit has been added to my remote

repository.

Drawbacks of Squashing

There are no significant drawbacks of squashing. But we can consider some facts that may

affect the project. These facts are as follows:

The squashing commits, and rebasing changes the history of the repository. If any

contributor does not pay attention to the updated history, then it may create conflict. I

suggest a clean history because it is more valuable than another one. Although we can

check the original history in the ref log.

There is another drawback, we may lose granularity because of squashing. Try to make

minimum squashes while working with Git. So, if you are new on Git, then try to stay away

from squash.

Git Fetch

Git "fetch" Downloads commits, objects and refs from another repository. It fetches

branches and tags from one or more repositories. It holds repositories along with the

objects that are necessary to complete their histories to keep updated remote-tracking

branches.

The "git fetch"command

The "git fetch" command is used to pull the updates from remote-tracking branches.

Additionally, we can get the updates that have been pushed to our remote branches to

our local machines. As we know, a branch is a variation of our repositories main code, so

the remote-tracking branches are branches that have been set up to pull and push from

remote repository.

How to fetch Git Repository

We can use fetch command with many arguments for a particular data fetch. See the

below scenarios to understand the uses of fetch command.

OOPs Concepts in Java

Scenario 1: To fetch the remote repository:

We can fetch the complete repository with the help of fetch command from a repository

URL like a pull command does. See the below output:

Syntax:

1. $ git fetch< repository Url>

Output:

In the above output, the complete repository has fetched from a remote URL.

Scenario 2: To fetch a specific branch:

We can fetch a specific branch from a repository. It will only access the element from a

specific branch. See the below output:

Syntax:

1. $ git fetch <branch URL><branch name>

Output:

In the given output, the specific branch test has fetched from a remote URL.

Scenario 3: To fetch all the branches simultaneously:

The git fetch command allows to fetch all branches simultaneously from a remote

repository. See the below example:

Syntax:

1. $ git fetch -all

Output:

In the above output, all the branches have fetched from the repository Git-Example.

Scenario 4: To synchronize the local repository:

Suppose, your team member has added some new features to your remote repository.

So, to add these updates to your local repository, use the git fetch command. It is used as

follows.

Syntax:

1. $ git fetch origin

Output:

In the above output, new features of the remote repository have updated to my local

system. In this output, the branch test2 and its objects are added to the local repository.

The git fetch can fetch from either a single named repository or URL or from several

repositories at once. It can be considered as the safe version of the git pull commands.

The git fetch downloads the remote content but not update your local repo's working

state. When no remote server is specified, by default, it will fetch the origin remote.

Differences between git fetch and git pull

To understand the differences between fetch and pull, let's know the similarities between

both of these commands. Both commands are used to download the data from a remote

repository. But both of these commands work differently. Like when you do a git pull, it

gets all the changes from the remote or central repository and makes it available to your

corresponding branch in your local repository. When you do a git fetch, it fetches all the

changes from the remote repository and stores it in a separate branch in your local

repository. You can reflect those changes in your corresponding branches by merging.

So basically,

1. git pull = git fetch + git merge

Git Fetch vs. Pull

Some of the key differences between both of these commands are as follows:

Git Pull / Pull Request

The term pull is used to receive data from GitHub. It fetches and merges changes from

the remote server to your working directory. The git pull command is used to pull a

repository.

Pull request is a process for a developer to notify team members that they have completed

a feature. Once their feature branch is ready, the developer files a pull request via their

remote server account. Pull request announces all the team members that they need to

review the code and merge it into the master branch.

The below figure demonstrates how pull acts between different locations and how it is

similar or dissimilar to other related commands.

OOPs Concepts in Java

The "git pull" command

The pull command is used to access the changes (commits)from a remote repository to

the local repository. It updates the local branches with the remote-tracking branches.

Remote tracking branches are branches that have been set up to push and pull from the

remote repository. Generally, it is a collection of the fetch and merges command. First, it

fetches the changes from remote and combined them with the local repository.

The syntax of the git pull command is given below:

Syntax:

1. $ git pull <option> [<repository URL><refspec>...]

In which:

<option>: Options are the commands; these commands are used as an additional option

in a particular command. Options can be -q (quiet), -v (verbose), -e(edit) and more.

<repository URL>: Repository URL is your remote repository's URL where you have

stored your original repositories like GitHub or any other git service. This URL looks like:

1. https://github.com/ImDwivedi1/GitExample2.git

To access this URL, go to your account on GitHub and select the repository you want to

clone. After that, click on the clone or download option from the repository menu. A new

pop up window will open, select clone with https option from available options. See the

below screenshot:

Copy the highlighted URL. This URL is used to Clone the repository.

<Refspec>: A ref is referred to commit, for example, head (branches), tags, and remote

branches. You can check head, tags, and remote repository in .git/ref directory on your

local repository. Refspec specifies and updates the refs.

How to use pull:

It is essential to understand how it works and how to use it. Let's take an example to

understand how it works and how to use it. Suppose I have added a new file

say design2.css in my remote repository of project GitExample2.

To create the file first, go to create a file option given on repository sub-functions. After

that, select the file name and edit the file as you want. Consider the below image.

Go to the bottom of the page, select a commit message and description of the file. Select

whether you want to create a new branch or commit it directly in the master branch.

Consider the below image:

Now, we have successfully committed the changes.

To pull these changes in your local repository, perform the git pull operation on your

cloned repository. There are many specific options available for pull command. Let's have

a look at some of its usage.

Default git pull:

We can pull a remote repository by just using the git pull command. It's a default option.

Syntax of git pull is given below:

Syntax:

1. $ git pull

Output:

In the given output, the newly updated objects of the repository are fetched through the

git pull command. It is the default version of the git pull command. It will update the

newly created file design2.css file and related object in the local repository. See the below

image.

As you can see in the above output, the design2.css file is added to the local repository.

The git pull command is equivalent to git fetch origin head and git merge head. The

head is referred to as the ref of the current branch.

Git Pull Remote Branch

Git allows fetching a particular branch. Fetching a remote branch is a similar process, as

mentioned above, in git pull command. The only difference is we have to copy the URL

of the particular branch we want to pull. To do so, we will select a specific branch. See the

below image:

In the above screenshot, I have chosen my branch named edited to copy the URL of the

edited branch. Now, I am going to pull the data from the edited branch. Below command

is used to pull a remote branch:

Syntax:

1. $ git pull <remote branch URL>

Output:

In the above output, the remote branch edited has copied.

Git Force Pull

Git force pull allows for pulling your repository at any cost. Suppose the below scenario:

If you have updated any file locally and other team members updated it on the remote.

So, when will you fetch the repository, it may create a conflict.

We can say force pull is used for overwriting the files. If we want to discard all the changes

in the local repository, then we can overwrite it by influentially pulling it. Consider the

below process to force pull a repository:

Step1: Use the git fetch command to download the latest updates from the remote

without merging or rebasing.

1. $ git fetch -all

Step2: Use the git reset command to reset the master branch with updates that you

fetched from remote. The hard option is used to forcefully change all the files in the local

repository with a remote repository.

1. $ git reset -hard <remote>/<branch_name>

2. $ git reset-hard master

Consider the below output:

In the above output, I have updated my design2.css file and forcefully pull it into the

repository.

Git Pull Origin Master

There is another way to pull the repository. We can pull the repository by using the git

pull command. The syntax is given below:

1. $ git pull <options><remote>/<branchname>

2. $ git pull origin master

In the above syntax, the term origin stands for the repository location where the remote

repository situated. Master is considered as the main branch of the project.

Consider the below output:

It will overwrite the existing data of the local repository with a remote repository.

You can check the remote location of your repository. To check the remote location of

the repository, use the below command:

1. $ git remote -v

The given command will result in a remote location like this:

1. origin https://github.com/ImDwivedi1/GitExample2 (fetch)

2. origin https://github.com/ImDwivedi1/GitExample2 (push)

The output displays fetch and push both locations. Consider the below image:

Git Pull Request

Pull request allows you to announce a change made by you in the branch. Once a pull

request is opened, you are allowed to converse and review the changes made by others.

It allows reviewing commits before merging into the main branch.

Pull request is created when you committed a change in the GitHub project, and you want

it to be reviewed by other members. You can commit the changes into a new branch or

an existing branch.

Once you've created a pull request, you can push commits from your branch to add them

to your existing pull request.

How to Create a Pull Request

To create a pull request, you need to create a file and commit it as a new branch. As we

mentioned earlier in this topic, how to commit a file to use git pull. Select the option

"create a new branch for this commit and start a pull request" from the bottom of the

page. Give the name of the new branch. Select the option to propose a new file at the

bottom of the page. Consider the below image.

In the above image, I have selected the required option and named the file

as PullRequestDemo. Select the option to propose a new file. It will open a new page.

Select the option create pull request. Consider the below image:

Now, the pull request is created by you. People can see this request. They can merge this

request with the other branches by selecting a merged pull request.

Git Push

The push term refers to upload local repository content to a remote repository. Pushing

is an act of transfer commits from your local repository to a remote repository. Pushing is

capable of overwriting changes; caution should be taken when pushing.

Moreover, we can say the push updates the remote refs with local refs. Every time you

push into the repository, it is updated with some interesting changes that you made. If

we do not specify the location of a repository, then it will push to default location at origin

master.

The "git push" command is used to push into the repository. The push command can be

considered as a tool to transfer commits between local and remote repositories. The basic

syntax is given below:

1. $ git push <option> [<Remote URL><branch name><refspec>...]

Push command supports many additional options. Some options are as follows under

push tags.

Git Push Tags

<repository>: The repository is the destination of a push operation. It can be either a

URL or the name of a remote repository.

<refspec>: It specifies the destination ref to update source object.

--all: The word "all" stands for all branches. It pushes all branches.

--prune: It removes the remote branches that do not have a local counterpart. Means, if

you have a remote branch say demo, if this branch does not exist locally, then it will be

removed.

--mirror: It is used to mirror the repository to the remote. Updated or Newly created local

refs will be pushed to the remote end. It can be force updated on the remote end. The

deleted refs will be removed from the remote end.

--dry-run: Dry run tests the commands. It does all this except originally update the

repository.

--tags: It pushes all local tags.

--delete: It deletes the specified branch.

-u: It creates an upstream tracking connection. It is very useful if you are going to push

the branch for the first time.

Git Push Origin Master

Git push origin master is a special command-line utility that specifies the remote branch

and directory. When you have multiple branches and directory, then this command assists

you in determining your main branch and repository.

Generally, the term origin stands for the remote repository, and master is considered as

the main branch. So, the entire statement "git push origin master" pushed the local

content on the master branch of the remote location.

Syntax:

1. $ git push origin master

Let's understand this statement with an example.

Let's make a new commit to my existing repository, say GitExample2. I have added an

image to my local repository named abc.jpg and committed the changes. Consider the

below

image:

In the above output, I have attached a picture to my local repository. The git status

command is used to check the status of the repository. The git status command will be

performed as follows:

1. $ git status

It shows the status of the untracked image abc.jpg. Now, add the image and commit the

changes as:

1. $ git add abc.jpg

2. $git commit -m "added a new image to project."

The image is wholly tracked in the local repository. Now, we can push it to origin master

as:

1. $ git push origin master

Output:

The file abc.jpg is successfully pushed to the origin master. We can track it on the remote

location. I have pushed these changes to my GitHub account. I can track it there in my

repository. Consider the below image:

In the above output, the pushed file abc.jpg is uploaded on my GitHub account's master

branch repository.

Git Force Push

The git force push allows you to push local repository to remote without dealing with

conflicts. It is used as follows:

1. $ git push <remote><branch> -f

Or

1. $ git push <remote><branch> -force

The -f version is used as an abbreviation of force. The remote can be any remote location

like GitHub, Subversion, or any other git service, and the branch is a particular branch

name. For example, we can use git push origin master -f.

We can also omit the branch in this command. The command will be executed as:

1. $git push <remote> -f

We can omit both the remote and branch. When the remote and the branch both are

omitted, the default behavior is determined by push.default setting of git config. The

command will be executed as:

1. $ git push -f

How to Safe Force Push Repository:

There are several consequences of force pushing a repository like it may replace the work

you want to keep. Force pushing with a lease option is capable of making fail to push if

there are new commits on the remote that you didn't expect. If we say in terms of git,

then we can say it will make it fail if remote contains untracked commit. It can be executed

as:

1. $git push <remote><branch> --force-with-lease

Git push -v/--verbose

The -v stands for verbosely. It runs command verbosely. It pushed the repository and gave

a detailed explanation about objects. Suppose we have added a newfile2.txt in our local

repository and commit it. Now, when we push it on remote, it will give more description

than the default git push. Syntax of push verbosely is given below:

Syntax:

1. $ git push -v

Or

1. $ git push --verbose

Consider the below output:

If we compare the above output with the default git option, we can see that git verbose

gives descriptive output.

Delete a Remote Branch

We can delete a remote branch using git push. It allows removing a remote branch from

the command line. To delete a remote branch, perform below command:

Syntax:

1. $ git push origin -delete edited

Output:

In the above output, the git push origin command is used with -delete option to delete a

remote branch. I have deleted my remote branch edited from the repository. Consider

the below image:

It is a list of active branches of my remote repository before the operating command.

The above image displays the list of active branches after deleting command. Here, you

can see that the branch edited has removed from the repository.

	Index
	1. Devops Tutorial
	2. Devops architecture
	3. Devops life cycle
	4. Workflow and principles
	5. Devops tools
	6. Devops automation
	7. Devops engineers
	8. pipeline and technologies
	9. azure devops
	10. aws devops
	11. training certification
	12. Devops vs agile
	13. Bash for Devops
	14. Terraform destroy command
	15. Terraform for loop
	16. Terraform format
	17. Terraform output command
	18. Terraform output
	19. Terraform tfstate
	20. Git tutorial
	21. What is github
	22. Git vs github
	23. Git vs svn
	24. Git vs mercurial
	25. Version control systems
	26. Install git on windows
	27. Install git on linux
	28. Install git on mac
	29. Git environment setup
	30. Git tools
	31. Git terminology
	32. Git commands
	33. Git flow
	34. Git cheat sheet
	35. Git init
	36. Git add
	37. Git commit
	38. Git clone
	39. Git stash
	40. Git ignore
	41. Git fork
	42. Git repository
	43. Git index
	44. Git head
	45. Git origin master
	46. Git remote
	47. Git tags
	48. Upstream and downstream
	49. Git checkout
	50. Git revert
	51. Git reset
	52. Git rm
	53. Git cherry-pick
	54. Git log
	55. Git diff
	56. Git status
	57. Git branch
	58. Merge and merge conflict
	59. Git rebase
	60. Git squash
	61. Git fetch
	62. Git pull
	63. Git push
	DevOps Tutorial
	What is DevOps?
	Why DevOps?
	DevOps History
	DevOps Architecture Features
	1) Automation
	2) Collaboration
	3) Integration
	4) Configuration management

	DevOps Advantages and Disadvantages
	Advantages
	Disadvantages

	o DevOps Architecture
	o 1) Build
	o 2) Code
	o 3) Test
	o 4) Plan
	o 5) Monitor
	o 6) Deploy
	o 7) Operate
	o 8) Release

	o DevOps Lifecycle
	o 1) Continuous Development
	o 2) Continuous Integration
	o 3) Continuous Testing
	o 4) Continuous Monitoring
	o 5) Continuous Feedback
	o 6) Continuous Deployment
	o 7) Continuous Operations

	DevOps Workflow
	DevOps Principles
	DevOps Practices

	DevOps Tools
	1) Puppet
	2) Ansible
	3) Docker
	4) Nagios
	5) CHEF
	6) Jenkins
	7) Git
	8) SALTSTACK
	9) Splunk
	10) Selenium

	DevOps Automation
	DevOps Automation Tools
	Infrastructure Automation
	Configuration Management
	Deployment Automation
	Performance Management
	Log Management
	Monitoring

	DevOps Engineers
	DevOps Engineer Roles and Responsibilities
	DevOps Engineers Salary

	DevOps Pipeline
	Continuous Integration Pipeline
	Continuous Delivery Pipeline
	DevOps Methodology

	Azure DevOps
	Azure DevOps Server
	Azure DevOps Services

	AWS DevOps
	AWS CloudFormation
	AWS EC2
	AWS CloudWatch
	AWS CodePipeline

	DevOps Training Certification
	Red Hat Certification
	Amazon Web Service Certification
	DevOps Institution

	evOps vs Agile
	What is DevOps?
	What is Agile?

	Bash for DevOps
	Bash
	Features of Bash

	Before DevOps
	What is DevOps
	Benefits of DevOps
	Bash Scripting in DevOps
	The bootup scripts (/etc/init.d)
	Why would someone use Bash?
	How, in all actuality, does Bash work?
	Examples
	What is Bash Mechanization?

	Terraform Destroy Command
	What is Terraform Destroy Command?
	When to Use Terraform Destroy Command?
	How does Terraform Destroy Command Work?
	Example of Terraform Destroy Command
	Advantages of Terraforming Destroy Command
	Disadvantages of Terraforming Destroy Command

	Terraform For Loop
	Terraform Loops
	1. For_Each Loop
	2. Count Loop

	Advantages of Terraform Loops
	Disadvantages of Terraform Loops

	Terraform Format
	Terraform Syntax
	Terraform Examples
	1. Creating an Azure virtual machine:

	Terraform Best Practices
	Advantages of Terraform
	Disadvantages of Terraform

	Terraform Output Command
	Purpose of Terraform Output Command
	Syntax of Terraform Output Command

	Usage of Terraform Output Command
	Examples of Terraform Output Command
	Program 1 (Extracting VPC ID)
	Program 2 (Composing Output Values)

	Benefits of Using Terraform Output Command
	Best Practice

	Terraform Output
	Terraform Output
	Example

	Advantages
	Disadvantages:

	Terraform tfstate
	What is Terraform tfstate?
	Why is Terraform tfstate Important?
	Managing Terraform tfstate:
	Advantages of Terraform tfstate
	Disadvantages of Terraform tfstate

	Git Tutorial
	What is Git?
	Features of Git
	Benefits of Git
	Why Git?

	What is GitHub?
	Features of GitHub
	Benefits of GitHub

	Difference between git and gitHub
	Git
	GitHub

	o Git vs SVN
	Git vs Mercurial
	Git Version Control System
	Benefits of the Version Control System
	Types of Version Control System
	Localized Version Control Systems
	Centralized Version Control System
	Distributed Version Control System

	Difference between Centralized Version Control System and Distributed Version Control System

	How to Install Git on Windows
	How to download Git?
	Install Git

	Install Git on Ubuntu
	Introduction to Git
	Brief History of Git
	Design of Git
	Characteristics
	Data structures

	Git Installation

	Install Git on Mac
	Git Installer for Mac
	Installation via MacPorts
	Install Git via Homebrew

	Git Environment Setup
	The Git config command
	Git configuration levels

	Git Tools
	Git Package Tools
	GitBash
	Git Bash Commands

	Git GUI
	Gitk

	Git Third-Party Tools

	Git Terminology
	Branch
	Checkout
	Cherry-Picking
	Clone
	Fetch
	HEAD
	Index
	Master
	Merge
	Origin
	Pull/Pull Request
	Push
	Rebase
	Remote
	Repository
	Stashing
	Tag
	Upstream And Downstream
	Git Revert
	Git Reset
	Git Ignore
	Git Diff
	Git Cheat Sheet
	Git Flow
	Git Squash
	Git Rm
	Git Fork

	12 Git Commands
	Basic Git Commands
	1) Git config command
	2) Git Init command
	3) Git clone command
	4) Git add command
	5) Git commit command
	6) Git status command
	7) Git push Command
	8) Git pull command
	9) Git Branch Command
	10) Git Merge Command
	11) Git log Command
	12) Git remote Command

	Git Flow / Git Branching Model
	The Main Branches
	Master Branch
	Develop Branch

	Supportive Branches
	Feature Branches
	Release Branches
	Hotfix Branches

	Git Cheat Sheet
	1. Git configuration
	2. Starting a project
	3. Local changes
	4. Track changes
	5. Commit History
	6. Ignoring files
	7. Branching
	8. Merging
	9. Remote
	10. Pushing Updates
	11. Pulling updates
	12. Undo changes
	13. Removing files

	Git Init
	Creating the first repository
	Create a Repository for a Blank (New) Project:
	Create a Repository for an existing project
	Create a Repository and Directory Together

	Git Add
	Git add files
	Git Add All
	Removing Files from the Staging Area

	Git Commit
	The git commit command
	Git commit -a
	Git commit -m
	Git Commit Amend (Change commit message)
	Add all New and Updated Files Only:
	Add all Modified and Deleted Files
	Add Files by Wildcard
	Git Undo Add

	Git Clone
	Git Clone Command
	Git Clone Repository
	Cloning a Repository into a Specific Local Folder
	Git Clone Branch

	Git Stash
	Stashing Work
	Git Stash Save (Saving Stashes with the message):
	Git Stash List (Check the Stored Stashes)
	Git Stash Apply
	Git Stash Changes
	Git Stash Pop (Reapplying Stashed Changes)
	Git Stash Drop (Unstash)
	Git Stash Clear
	Git Stash Branch

	Git Ignore
	Git Ignore Files
	How to Ignore Files Manually
	The .gitignore file:
	Global .gitignore:.

	How to List the Ignored Files?

	Git Fork
	How to Fork a Repository?
	Fork vs. Clone

	Git Repository
	Getting a Git Repository
	Initializing a Repository
	Cloning an Existing Repository

	Git Index
	Working directory:
	Staging area:
	Repository:

	Git Origin Master
	Git Master
	Git Origin

	Git Remote
	Check your Remote
	Git Remote Add
	Fetching and Pulling Remote Branch
	Pushing to Remote Branch
	Git Remove Remote
	Git Remote Rename
	Git Show Remote
	Git Change Remote (Changing a Remote's URL)

	Git Tags
	When to create a Tag:
	Git Create tag
	Git List Tag
	The "git tag":
	The git tag show <tagname>:
	The git tag -l ".*":

	Types of Git tags
	Annotated Tags
	Light-Weighted Tag:

	Git Push Tag
	The git push origin :
	The git push origin --tag/ git push --tags:

	Git Delete Tag
	Delete a Remote Tag:
	Delete Multiple Tags:

	Git Checkout Tags

	Upstream and Downstream
	Git set-upstream

	Git Checkout
	Operations on Git Checkout
	Checkout Branch
	Create and Switch Branch
	Checkout Remote Branch

	Git Revert
	Git Revert Options:
	Git Revert to Previous Commit
	Git Revert Merge
	How to Revert a Merge

	Git Reset
	Git Reset Hard
	Git Reset Mixed
	Git Reset Head (Git Reset Soft)
	Git Reset to Commit

	Git Rm
	The git rm command
	Git Rm Cached
	Undo the Git Rm Command
	Limits of Git Rm command

	Git Cherry-pick
	Why Cherry-Pick
	Usage of cherry-pick

	Git log
	How to Exit the git log Command?
	Basic Git log
	Git Log Oneline
	Git Log Stat
	Git log P or Patch
	Git Log Graph
	Filtering the Commit History

	Git Diff
	Git Diff Branches

	Git Status
	Status when Working Tree is cleaned
	Status when a new file is created
	Status when an existing file is modified
	Status when a file is deleted

	Git Branch
	Git Master Branch
	Operations on Branches
	Create Branch
	List Branch
	Delete Branch
	Delete a Remote Branch
	Switch Branch
	Rename Branch
	Merge Branch

	Git Merge and Merge Conflict
	The "git merge" command
	Git Merge Conflict
	Resolve Conflict:

	Git Rebase
	How to Rebase
	Rebase Branch
	Git Interactive Rebase
	GitMerge vs. Rebase

	Git Squash
	Git Squash Commits
	Drawbacks of Squashing

	Git Fetch
	The "git fetch"command
	How to fetch Git Repository
	Scenario 1: To fetch the remote repository:
	Scenario 2: To fetch a specific branch:
	Scenario 3: To fetch all the branches simultaneously:
	Scenario 4: To synchronize the local repository:

	Differences between git fetch and git pull
	Git Fetch vs. Pull

	Git Pull / Pull Request
	The "git pull" command
	Default git pull:
	Git Pull Remote Branch
	Git Force Pull
	Git Pull Origin Master
	Git Pull Request
	How to Create a Pull Request

	Git Push
	Git Push Tags
	Git Push Origin Master
	Git Force Push
	How to Safe Force Push Repository:

	Git push -v/--verbose
	Delete a Remote Branch

