

 DevOps Shack

 50 Kubernetes Errors & Solutions
1. CrashLoopBackOff: Pod fails to start repeatedly.

• Error Example: Your pod status shows:

kubectl get pods

NAME READY STATUS RESTARTS AGE
myapp-12345-abcde 0/1 CrashLoopBackOff 10 5m

• Cause: This error typically indicates that the container crashes soon after starting.

• Solution: Check the logs to see why it's failing to start:

kubectl logs myapp-12345-abcde

• If there’s an application error (e.g., a missing file or environment variable), correct the

configuration or the container image itself. For instance:

Deployment YAML Example
env:
 - name: DATABASE_URL
 value: "jdbc:postgresql://mydb:5432/mydatabase"

2. ImagePullBackOff: Kubernetes can’t pull the specified container image.

• Error Example:

kubectl describe pod myapp-12345-abcde

Output

Failed to pull image "myregistry/myapp:latest": image not found

• Cause: This occurs if Kubernetes cannot find or access the specified container image.

• Solution:

o Check the image name and tag for errors.

o Ensure that your image is available in the container registry.

o If using a private registry, make sure your Kubernetes cluster can access it with

proper credentials, as shown below:

imagePullSecrets:

 - name: myregistrykey

o Create a secret if necessary:

kubectl create secret docker-registry myregistrykey --docker-server=myregistry --docker-

username=myuser --docker-password=mypass

3. ErrImagePull: Failure in pulling the image.

• Solution: This error is similar to ImagePullBackOff. Ensure:

o The image name is correct.

o The registry is accessible.

o Use a secure registry if necessary and validate permissions.

o An example command for pulling:

docker pull myregistry/myapp:latest

o You can also inspect node-level issues or check firewall settings if you’re in a

restricted network environment.

4. Pending Pods: Pods remain in pending state due to lack of resources or node unavailability.

• Error Example:

kubectl get pods

NAME READY STATUS RESTARTS AGE

myapp 0/1 Pending 0 1m

• Solution:

o Check the pod events with:

kubectl describe pod myapp

o If you see messages like “Insufficient CPU,” then the cluster is out of resources.

Either scale up your cluster, increase node resources, or decrease the pod’s resource

requests.

resources:
 requests:
 memory: "64Mi"
 cpu: "250m"

5. Node NotReady: A node is not in a ready state, which prevents pods from running on it.

• Error Example:

kubectl get nodes

NAME STATUS ROLES AGE VERSION

worker-node NotReady <none> 30m v1.20.0

• Solution:

o Describe the node to understand why it’s not ready:

kubectl describe node worker-node

o Common causes include network issues, disk pressure, or kubelet failures. You may

need to restart the kubelet or fix network configurations on the affected node.

6. OOMKilled: The pod gets killed because it uses more memory than allocated.

• Error Example:

o You may find events similar to:

Last State: Terminated

 Reason: OOMKilled

 Exit Code: 137

• Solution:

o Increase the memory limit of the container:

resources:
 limits:
 memory: "128Mi"
 requests:
 memory: "64Mi"

o If your application is prone to memory spikes, you might want to optimize it or

provide more resources.

7. Unauthorized: Authentication failure when trying to access resources.

• Error Example:

Error from server (Unauthorized): pods is forbidden: User

"system:serviceaccount:default:myserviceaccount" cannot list resource "pods" in API group "" in the

namespace "default"

• Solution:

o Make sure the ServiceAccount is associated with the correct roles.

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: read-pods
 namespace: default
subjects:
 - kind: ServiceAccount
 name: myserviceaccount
 namespace: default
roleRef:
 kind: Role
 name: pod-reader
 apiGroup: rbac.authorization.k8s.io

8. Forbidden: Authorization issue where the user does not have permissions.

• Error Example:

Error from server (Forbidden): services is forbidden: User "user" cannot list resource "services" in API

group ""

• Solution:

o This error generally occurs due to lack of access in RBAC. Check if the user or

ServiceAccount has the correct role binding.

o Example:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: my-clusterrolebinding
subjects:
- kind: User
 name: user
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: ClusterRole
 name: cluster-admin
 apiGroup: rbac.authorization.k8s.io

9. Evicted Pods: Pods are removed from a node due to resource constraints.

• Error Example:

o When nodes are low on resources, pods may be evicted:

kubectl get pod myapp-12345-abcde
NAME READY STATUS RESTARTS AGE
myapp-12345-abcde 0/1 Evicted 0 1m

• Solution:

o Either add resources to nodes or reduce resource requests in your workloads.

Additionally, ensure resource limits are configured properly to avoid excessive

resource consumption.

10. PVC Bound Issues: PersistentVolumeClaims (PVCs) are not bound to PersistentVolumes (PVs).

• Error Example:

o If a PVC status remains “Pending”:

kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

my-pvc Pending <none> <none> <none> standard 5m

• Solution:

o Check that a matching PersistentVolume is available and meets the PVC

requirements.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Retain
 storageClassName: standard
 hostPath:
 path: "/mnt/data"

11. Service Not Accessible: Services are not reachable within or outside the cluster.

• Error Example:

o Trying to access a service at http://service-name:port but getting a timeout.

• Solution:

o Verify the service is correctly configured and check if pods are assigned to the

service.

o Run:

kubectl describe service my-service

o Ensure service type (e.g., ClusterIP, NodePort, LoadBalancer) is correctly configured

and check firewall settings if necessary.

12. DNS Resolution Failures: Pods cannot resolve DNS names within the cluster.

• Error Example:

o Pod logs may show errors like "Unable to resolve host: [hostname]."

• Solution:

o Verify CoreDNS pods are running:

kubectl get pods -n kube-system -l k8s-app=kube-dns

o Restart CoreDNS if needed, and verify your pod's DNS settings:

dnsPolicy: ClusterFirst

13. Certificate Errors: TLS certificates are invalid or expired.

• Error Example:

o Accessing a Kubernetes service with TLS and receiving "Certificate Expired" error.

• Solution:

o Renew certificates with kubeadm certs renew (if using kubeadm). Update your TLS

secret:

kubectl delete secret my-cert

kubectl create secret tls my-cert --cert=path/to/tls.crt --key=path/to/tls.key

14. API Server Unreachable: Cannot connect to the Kubernetes API server.

• Error Example:

o kubectl commands fail with "Unable to connect to the server: connection refused."

• Solution:

o Check the API server status with:

systemctl status kube-apiserver

o Ensure firewall rules allow access to port 6443 and review kube-apiserver logs for

errors.

15. Scheduler Failures: Pods are not being scheduled.

• Error Example:

o Pods stuck in Pending status without apparent resource issues.

• Solution:

o Check if the scheduler is running:

kubectl get pods -n kube-system | grep kube-scheduler

o Review the scheduler logs and verify that pod anti-affinity rules aren’t too restrictive.

16. Controller Manager Issues: Controllers aren’t managing resources properly.

• Error Example:

o Resources like Deployments or ReplicaSets not behaving as expected.

• Solution:

o Check the controller manager pod’s logs for errors and ensure it’s running:

kubectl logs -n kube-system kube-controller-manager-[pod-name]

17. Network Plugin Errors: Issues with the network plugin can cause connectivity problems.

• Error Example:

o Pods cannot communicate across nodes.

• Solution:

o Check if the network plugin (e.g., Calico, Flannel) pods are running and review their

logs.

o Inspect kubectl get pods -n kube-system to ensure the network plugin’s pods are up.

18. Pod Stuck in Terminating State: Pod doesn’t terminate after issuing delete command.

• Solution:

o Force delete the pod:

kubectl delete pod [pod-name] --grace-period=0 --force

o Investigate why the pod failed to terminate, such as open connections or finalizers.

19. ConfigMap Not Found: Pod references a missing ConfigMap.

• Error Example:

Warning FailedMount … ConfigMap "myconfig" not found

• Solution:

o Create the missing ConfigMap:

kubectl create configmap myconfig --from-literal=key=value

20. Secret Not Found: Pod references a missing Secret.

• Error Example:

Warning FailedMount … Secret "mysecret" not found

• Solution:

o Create or update the secret:

kubectl create secret generic mysecret --from-literal=username=admin --from-literal=password=pass

21. HPA Not Scaling: Horizontal Pod Autoscaler is not scaling as expected.

• Error Example:

o HPA status shows "Desired Replicas: 1" despite high load.

• Solution:

o Ensure the metrics server is running:

kubectl get deployment metrics-server -n kube-system

o Confirm HPA is targeting the correct metrics and configure thresholds if needed.

22. Ingress Not Working: Ingress does not route traffic as expected.

• Error Example:

o Ingress setup is complete, but external requests fail.

• Solution:

o Ensure an ingress controller (e.g., NGINX Ingress) is deployed.

o Check ingress resource configuration:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

 name: example-ingress
spec:
 rules:
 - host: example.com
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: example-service
 port:
 number: 80

23. DaemonSet Pods Not Running: DaemonSet pods do not start on all nodes.

• Error Example:

kubectl get daemonsets -A

Shows fewer than expected pods.

• Solution:

o Review node taints/tolerations and add tolerations to the DaemonSet spec if

needed.

24. Job Not Completing: Kubernetes Job fails to finish successfully.

• Error Example:

o Job remains in "Running" or "Failed" status.

• Solution:

o Check pod logs for errors and review job spec:

apiVersion: batch/v1
kind: Job
metadata:
 name: my-job
spec:
 backoffLimit: 3
 template:
 spec:
 containers:
 - name: my-container
 image: busybox
 command: ["echo", "Hello World"]
 restartPolicy: Never

25. PVC Pending: PersistentVolumeClaim remains in "Pending" status.

• Error Example:

o PVC status shows:

kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

my-pvc Pending <none> <none> <none> standard 1h

• Solution:

o Ensure there’s a matching PersistentVolume with the correct access modes and

storage class.

26. Node Disk Pressure: Node has high disk usage, causing evictions.

• Error Example:

o Pods get evicted with DiskPressure status on the node.

• Solution:

o Free up space on the node or add additional storage, as shown:

df -h

27. Pod Affinity/Anti-Affinity Issues: Pods are unscheduled due to restrictive affinity rules.

• Solution:

o Ensure affinity rules are not too restrictive in the deployment YAML:

affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - myapp
 topologyKey: "kubernetes.io/hostname"

28. ServiceAccount Not Found: Pods reference a missing ServiceAccount.

• Solution:

o Create or specify a valid ServiceAccount:

kubectl create serviceaccount myserviceaccount

29. Node NotSchedulable: Node is marked as unschedulable, preventing pods from being placed.

• Error Example:

kubectl get nodes

NAME STATUS ROLES AGE VERSION

worker-node Ready,SchedulingDisabled <none> 1h v1.20.0

• Solution:

o Enable scheduling on the node:

kubectl uncordon worker-node

30. Readiness Probe Failures: Containers fail readiness checks, causing them to stay in a “Not

Ready” state.

• Error Example:

o Describe the pod and see repeated readiness probe failures.

• Solution:

o Adjust probe parameters to suit the application’s startup time:

readinessProbe:
 httpGet:
 path: /health
 port: 8080
 initialDelaySeconds: 10
 periodSeconds: 5

31. Liveness Probe Failures: Containers fail liveness checks, resulting in restarts.

• Solution:

o Similar to readiness probes, increase the delay and interval to allow the application

more time to become live:

livenessProbe:
 httpGet:
 path: /live
 port: 8080
 initialDelaySeconds: 15
 periodSeconds: 10

32. Namespace Not Found: Resource references a non-existent namespace.

• Error Example:

Error from server (NotFound): namespaces "test-namespace" not found

• Solution:

o Create the namespace before deploying resources:

kubectl create namespace test-namespace

33. ClusterRoleBinding Misconfiguration: Access issues due to incorrect ClusterRoleBinding setup.

• Solution:

o Check and configure the ClusterRoleBinding correctly:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: example-binding
subjects:
 - kind: ServiceAccount
 name: example-sa
 namespace: default
roleRef:
 kind: ClusterRole
 name: view
 apiGroup: rbac.authorization.k8s.io

34. PVC Not Bound: PVC fails to bind to PV due to storage class mismatch.

• Solution:

o Ensure the storageClassName matches between PVC and PV.

35. Node Memory Pressure: Nodes experience high memory pressure, causing evictions.

• Solution:

o Check node memory usage with kubectl top nodes and consider scaling up nodes or

reducing pod resource requests.

36. Service Endpoint Not Updated: Service does not update endpoints, resulting in unreachable

services.

• Solution:

o Ensure that the selector matches pod labels:

selector:
 app: myapp

37. Endpoint Slices Issues: Endpoint slices are missing, causing network issues.

• Solution:

o Reconfigure or manually create endpoint slices if needed. Ensure kube-proxy is

running and check its logs.

38. DaemonSet Not Deploying on All Nodes: DaemonSet skips certain nodes.

• Solution:

o Check taints on nodes and add tolerations to the DaemonSet:

tolerations:
 - key: "key"
 operator: "Exists"

39. Finalizer Preventing Resource Deletion: Resource remains due to finalizers.

• Solution:

o Remove finalizers to allow deletion:

kubectl patch resource resource-name -p '{"metadata":{"finalizers":[]}}' --type=merge

40. Ingress 404 Errors: Requests to Ingress return 404.

• Solution:

o Ensure correct path definitions and verify that the Ingress controller is properly

configured.

41. LoadBalancer IP Not Assigned: LoadBalancer service fails to get an external IP.

• Solution:

o Verify cloud provider configuration or use a different service type like NodePort for

testing.

42. HPA Targets Not Matching Metrics: HPA doesn’t scale as it’s not receiving target metrics.

• Solution:

o Check the HPA target settings and ensure metrics are available via metrics server or

Prometheus.

43. PersistentVolume Deleted but PVC Bound: PVC remains bound even though PV was deleted.

• Solution:

o Manually unbind and delete PVC or recreate PV with the same name to bind back.

44. Helm Release Fails: Helm fails due to missing charts or resources.

• Solution:

o Ensure Helm chart dependencies are installed using:

helm dependency update mychart/

45. API Version Deprecated: Using outdated API versions causes compatibility issues.

• Solution:

o Update your YAML files to use the latest API versions (e.g., apps/v1 instead of

extensions/v1beta1 for Deployments).

46. Namespace Resource Quota Exceeded: Deployments fail due to resource quota limits in a

namespace.

• Solution:

o Check quota with:

kubectl describe quota -n [namespace]

o Adjust resources or increase the quota if needed.

47. Cannot Attach Volume to Multiple Pods: Persistent volumes with RWO access can’t be shared

across pods.

• Solution:

o Switch to a storage class supporting ReadWriteMany (RWX), like NFS, for shared

access.

48. CPU Throttling: Containers experience high CPU throttling.

• Solution:

o Increase the CPU limit or optimize application code to avoid exceeding CPU quotas:

resources:
 limits:
 cpu: "500m"
 requests:
 cpu: "250m"

49. Pods Evicted Due to Overcommit: Overcommitted resources lead to evictions.

• Solution:

o Allocate resources more conservatively or scale cluster resources accordingly.

50. PodSecurityPolicy Issues: Pods fail to start due to restrictive PodSecurityPolicy.

• Solution:

o Adjust the PodSecurityPolicy to allow necessary permissions:

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: example-psp

spec:

 privileged: true

