
PromQL
Cheatsheet
Prometheus is a monitoring and alerting
system with a text based metric format,
a multidimensional data model and
a powerful query language. It’s now
widely used and is the de facto standard
for monitoring Kubernetes.

Its metrics can be pulled from different
sources, known as 'targets'. Also,
they are available even under failure
conditions. Furthermore, Prometheus
has broad coverage in OSS communities,
so there is a lot of integrations and
documentation available.

FU
N

CT
IO

N
S

AG
G

RE
G

AT
O

RS
 &

 O
PE

RA
TO

RSBASIC
node_cpu_seconds_total

It shows the time-series of a metric. Same as
{__name__="node_cpu_seconds_total"}.

node_cpu_seconds_total{mode="idle"}

Selector with label to return matching time series.
Available matchers are: = (equal), != (not equal), =~
(matches a regex), !~ (doesn’t match a regex). Multiple
labels can be specified separated by comma.

RANGE VECTOR
node_cpu_seconds_total[5m]

A vector selector, with an added duration. This is an
inclusive match over time, so all samples from exactly 10
minutes ago up as far as the query evaluation time will be
included. A single suffix must be provided (ms milliseconds,
seconds, minutes, hours, days, weeks, years).

OFFSET MODIFIER
up offset 10m

When a query is executed, a time is provided. This defaults
to now. Instant vectors return the most recent sample
before this, in accordance with staleness. Range vectors
return everything from the query time looking back as
far as the duration. This uses the same duration syntax as
range vectors.

SE
LE

CT
O

RS
MATH FUNCTIONS
log10(process_resident_memory_bytes)

It takes in a vector and returns a vector, and generally does
what you’d expect. Available math functions are: abs,
ceil, exp, floor, ln, log2, log10, round, sqrt.

round(node_cpu_seconds_total,10)

In addition, round takes a second optional scalar
argument to change what you’re rounding to.

CLAMPING
clamp_min(go_goroutines,20)

It sets a bound on the returned values. This can be useful
if you sometimes get spurious values, or incorrectly
implemented counters. Two bounds can be set: a lower
bound (clamp_min) and an upper bound (clamp_max).

TIMESTAMPS
time() - process_start_time_seconds

The time function returns the Unix time in seconds when
the query has been executed. Useful to calculate elapsed
time from a returned timestamp of a metric.

TIME AND DATES
day_of_month()

You can break a timestamp into multiple time
measurements. Available functions are: day_of_month,
day_of_week, days_in_month, hour, minute,
month, year.

AGGREGATORS
count(up{job="demo"})

They take an instant vector, and return an instant vector.
Available aggregators are: sum, count, count_values,
min, max, avg, stddev, stdvar, topk, bottomk,
quantile. Special cases are topk and bottomk that
also take a number of lines, quantile lines that takes
the percentile, and count_values that needs a specified
value to count.

CHOOSING AGGREGATION LABELS
count without(device)
(node_disk_read_bytes_total)

The without modifier says to use all the labels in the output
- except the ones listed. Another modifier is by, which says
to only output the given labels.

OPERATORS

prometheus_tsdb_head_active_appenders + 2
Basic arithmetic (+ - * / % ^), comparison (== != >
>= < <=), and logical (and unless or) operators as
found in many programing languages, are also found
here.

node_filesystem_files_free /
node_filesystem_files

Prometheus has to match up time series from the left hand
side (LHS) and right hand side (RHS). If everything matches
up perfectly ignoring metric names on LHS and RHS, you’ll
get an output time series.

GAUGE RANGE VECTORS
changes(process_start_time_seconds[15m])

It’s the number of times each time series changed value.

deriv(process_resident_memory_bytes[1h])

This uses a least-squares regression to estimate per-
second change in a time series.

predict_linear(node_filesystem_free_bytes[4h],
3600)

It also uses a least-squares regression, and uses it to
predict where the time series will be in the given amount
of seconds. Other available functions are holt_winters
for smoothing a time series based on past data, and
idelta that returns the difference between the last two
samples.

AGGREGATING ACROSS TIME
avg_over_time
(process_resident_memory_bytes[10m])

There are range vector functions that work across time to
aggregate each time series, and returns an instant vector.
Available functions are:
avg_over_time, sum_over_time,
count_over_time, min_over_time,
max_over_time, stddev_over_time,
stdvar_over_time, quantile_over_time.

quantile_over_time(0.95,
process_resident_memory_bytes[10m])

This function takes an additional parameter to indicate the
quantile. In this example, 0.95 gives the 95th percentile.

MATCHING TIME SERIES
 sum(rate(node_cpu_seconds_total{mode="idle"}
[1m])) / on (instance, job, mode)
sum(rate(node_cpu_seconds_total[1m]))

If things don’t match up, we can use the on aggregator.
With it, we can specify where the two time series are going
to match. It needs to have a set of labels that doesn’t result
in an ambiguous match.

 sum without (cpu)(rate
(node_cpu_seconds_total{mode="idle"}[5m]))
/ ignoring (mode) sum without (cpu,mode)
(rate(node_cpu_seconds_total[5m]))

If it’s easier for you to specify where two time series do not
match, then the ignoring aggregator is just for you. If
there’s exactly one time series in matching buckets on both
sides, operation will go ahead. If there’s zero on one side,
operation will not go ahead due to no match. If there’s many
time series in a bucket, you’ll get an error.

COUNTER RANGE VECTORS
rate(process_cpu_seconds_total[1m])

This calculates per-second increase of a counter, allowing
for resets and extrapolating at edges to provide better
results. This is the most common function you will use
in PromQL, and sometimes can be found with function
sum; always use them in this order: sum(rate(foo)).
It supports counter metrics resets. Try out the difference
between with and without rate.

increase(process_cpu_seconds_total[15m])

It returns the increase across the period. In the example
this is a per quarter of hour increase. Only use increase
for display, use rate in rules and alerts.

irate(http_requests_total{status_code="401"}
[15m])

This only looks at the last two data points and returns the
per-second rate. It produces very responsive graphs, but
doesn’t do well for alerting or longer time frames.

resets(http_requests_total[1h])

It counts the number of counter resets. Useful mostly
for debugging. If you want to track how often a process
restarts, a timestamp gauge and changes is better.

SUBQUERYING
max_over_time
(rate(process_cpu_seconds_total[5m])[1h:])

A subquery takes an instant vector expression and
evaluates it at various points in a time range, producing a
range vector.

HISTOGRAMS
histogram_quantile(0.95, rate
(request_duration_seconds_bucket
{status_code="401"}[10m]))

It calculates the given quantile. It should be passed a gauge
instant vector, which means applying rate or irate first.

MANY TO ONE
 sum without (cpu)(rate
(node_cpu_seconds_total{mode="idle"}[5m])) /
ignoring(mode) group_left sum without
(mode, cpu)(rate(node_cpu_seconds_total[5m]))

Sometimes you want to do a many-to-one match. We would
use the group_left modifier. Many is the left side. We
keep all the labels on the many side, and copy over any
labels listed in the group_left. Aggregator group_
right is similar, switching LHS and RHS. This should be
accompanied by on or ignoring, as specifying matching
labels is needed.

COMPARISON OPERATORS
up != 0

Matching works the same as for binary operators. Vector
and vector will keep the LHS time series if the comparison
is true. Scalar and vector will keep the vector time
series if the comparison is true. Scalar and scalar is an
error. No sane vector can be returned here.

SWITCHING TYPES
scalar(round(vector(time()), 3600))

You can convert scalars to vectors with vector, and
vectors to scalars with scalar.

ALTERING LABELS
label_replace
(node_filesystem_size_bytes,"example",
"$1","device","(.*)")

The most complicated function in PromQL. It allows you to
set a label based on a regex applied to a label. If the regex
doesn’t match, the original time series is returned. It takes
a vector, the new label, a replacement string, the old label
and a regex for the label.

label_join(node_filesystem_size_bytes
{device="tmpfs",fstype="tmpfs"}, "foo", ",",
"device", "fstype")

This joins the values of multiple labels with the given
separator. It takes a vector, the new label, a separator
string, and existing labels.

SORTING
sort(node_filesystem_size_bytes)

It returns a sorted (ascendingly) vector. A descendent
version exists called sort_desc. NaNs always sort to the
end, so these functions aren’t simple reverses of each other.

MISSING VALUES
absent(up{job="node"})

This returns nothing if there are any time series in the
vector. If there are no time series, it returns 1 with labels
taken from the selector - so use this directly on selectors.

BOOL VS FILTERING
count(process_max_fds < 1024)

The default mode of comparisons is to filter. You can add
the bool modifier to return 0/1 instead. 1 means true.
Modifier bool also allows scalar/scalar comparisons to
work. Filtering is what you want for alerts. However it is
difficult to work with elsewhere as you can end up with no
time series in a bucket if everything is filtered.

LOCAL/SET OPERATORS
rate(process_cpu_seconds_total[5m]) unless
process_resident_memory_bytes < 1e6

These are many-to-many operators. Operators and,
unless, and or don’t follow quite the same matching rules.
Operator and returns LHS time series if there’s at least one
matching time series on RHS. Operator unless is opposite
of and, needs there to be no match on RHS. Operator or
returns the LHS if present, otherwise the RHS.

For more information on Prometheus or PromQL, please refer to:
https://prometheus.io/docs/prometheus/latest/querying/basics
Learn how Sysdig simplifies Prometheus and PromQL on:
https://sysdig.com/product/monitor/prometheus
To discover Prometheus based monitoring integrations, don't miss:
https://promcat.io/

For more information on Prometheus
or PromQL, please refer to
https://prometheus.io/docs/prometheus/latest/querying/basics/

Test these expressions in the 'Try PromQL' tab
of our PromQL Playground
https://learn.sysdig.com/promql-playground

https://prometheus.io/docs/prometheus/latest/querying/basics/

